用s -迭代法研究高阶非线性volterra fredholm积分微分方程解的存在性

IF 0.2 Q4 MATHEMATICS, APPLIED
H. L. Tidke, G. Patil
{"title":"用s -迭代法研究高阶非线性volterra fredholm积分微分方程解的存在性","authors":"H. L. Tidke, G. Patil","doi":"10.17654/0974324323014","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and other properties of the solution of the nonlinear Volterra Fredholm integrodifferential equation of higher order. The tool employed in the analysis is based on the application of the S-iteration method. Various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein are obtained using the S-iteration method. Examples are provided in support of findings.","PeriodicalId":41162,"journal":{"name":"Advances in Differential Equations and Control Processes","volume":"18 22","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE OF SOLUTIONS FOR NONLINEAR VOLTERRA FREDHOLM INTEGRODIFFERENTIAL EQUATION OF HIGHER ORDER VIA S-ITERATION METHOD\",\"authors\":\"H. L. Tidke, G. Patil\",\"doi\":\"10.17654/0974324323014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence and other properties of the solution of the nonlinear Volterra Fredholm integrodifferential equation of higher order. The tool employed in the analysis is based on the application of the S-iteration method. Various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein are obtained using the S-iteration method. Examples are provided in support of findings.\",\"PeriodicalId\":41162,\"journal\":{\"name\":\"Advances in Differential Equations and Control Processes\",\"volume\":\"18 22\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations and Control Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17654/0974324323014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations and Control Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974324323014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类高阶非线性Volterra—Fredholm积分微分方程解的存在性及其它性质。分析中使用的工具是基于S迭代方法的应用。使用S迭代方法获得了各种性质,如对初始数据的依赖性、解的接近性以及对其中涉及的参数和函数的依赖性。提供了支持调查结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE OF SOLUTIONS FOR NONLINEAR VOLTERRA FREDHOLM INTEGRODIFFERENTIAL EQUATION OF HIGHER ORDER VIA S-ITERATION METHOD
In this paper, we study the existence and other properties of the solution of the nonlinear Volterra Fredholm integrodifferential equation of higher order. The tool employed in the analysis is based on the application of the S-iteration method. Various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein are obtained using the S-iteration method. Examples are provided in support of findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信