基本群类群中的致密积

Pub Date : 2019-06-03 DOI:10.1007/s40062-019-00238-z
Jeremy Brazas
{"title":"基本群类群中的致密积","authors":"Jeremy Brazas","doi":"10.1007/s40062-019-00238-z","DOIUrl":null,"url":null,"abstract":"<p>Infinitary operations, such as products indexed by countably infinite linear orders, arise naturally in the context of fundamental groups and groupoids. Despite the fact that the usual binary operation of the fundamental group determines the operation of the fundamental groupoid, we show that, for a locally path-connected metric space, the well-definedness of countable dense products in the fundamental group need not imply the well-definedness of countable dense products in the fundamental groupoid. Additionally, we show the fundamental groupoid <span>\\(\\Pi _1(X)\\)</span> has well-defined dense products if and only if <i>X</i> admits a generalized universal covering space.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-019-00238-z","citationCount":"2","resultStr":"{\"title\":\"Dense products in fundamental groupoids\",\"authors\":\"Jeremy Brazas\",\"doi\":\"10.1007/s40062-019-00238-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Infinitary operations, such as products indexed by countably infinite linear orders, arise naturally in the context of fundamental groups and groupoids. Despite the fact that the usual binary operation of the fundamental group determines the operation of the fundamental groupoid, we show that, for a locally path-connected metric space, the well-definedness of countable dense products in the fundamental group need not imply the well-definedness of countable dense products in the fundamental groupoid. Additionally, we show the fundamental groupoid <span>\\\\(\\\\Pi _1(X)\\\\)</span> has well-defined dense products if and only if <i>X</i> admits a generalized universal covering space.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-019-00238-z\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-019-00238-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-019-00238-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基本群和类群的背景下,自然会出现无限运算,例如由可数无限线性阶索引的乘积。尽管基本群的一般二元运算决定了基本群的运算,但我们证明了对于局部路径连通的度量空间,基本群的可数密积的良定义性不一定意味着基本群的可数密积的良定义性。此外,我们证明了基本群类群\(\Pi _1(X)\)具有定义良好的稠密积当且仅当X允许一个广义的全称覆盖空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dense products in fundamental groupoids

分享
查看原文
Dense products in fundamental groupoids

Infinitary operations, such as products indexed by countably infinite linear orders, arise naturally in the context of fundamental groups and groupoids. Despite the fact that the usual binary operation of the fundamental group determines the operation of the fundamental groupoid, we show that, for a locally path-connected metric space, the well-definedness of countable dense products in the fundamental group need not imply the well-definedness of countable dense products in the fundamental groupoid. Additionally, we show the fundamental groupoid \(\Pi _1(X)\) has well-defined dense products if and only if X admits a generalized universal covering space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信