{"title":"摆振运动非线性模型的可积性","authors":"S. Nikolov, V. Vassilev","doi":"10.7546/jgsp-65-2023-93-108","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamical systems can be studied in many different directions: i)~finding integrable cases and their analytical solutions, ii)~investigating the algebraic nature of the integrability, iii)~topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1)~the dumbbell lengths and point-masses meet a special condition; 2)~the gravitational force is neglected.","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":"27 9","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability in a Nonlinear Model of Swing Oscillatory Motion\",\"authors\":\"S. Nikolov, V. Vassilev\",\"doi\":\"10.7546/jgsp-65-2023-93-108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear dynamical systems can be studied in many different directions: i)~finding integrable cases and their analytical solutions, ii)~investigating the algebraic nature of the integrability, iii)~topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1)~the dumbbell lengths and point-masses meet a special condition; 2)~the gravitational force is neglected.\",\"PeriodicalId\":43078,\"journal\":{\"name\":\"Journal of Geometry and Symmetry in Physics\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Symmetry in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/jgsp-65-2023-93-108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-65-2023-93-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Integrability in a Nonlinear Model of Swing Oscillatory Motion
Nonlinear dynamical systems can be studied in many different directions: i)~finding integrable cases and their analytical solutions, ii)~investigating the algebraic nature of the integrability, iii)~topological analysis of integrable systems, and so on. The aim of the present paper is to find integrable cases of a dynamical system describing the rider and the swing pumped (from the seated position) as a compound pendulum. As a result of our analytical calculations, we can conclude that this system has two integrable cases when: 1)~the dumbbell lengths and point-masses meet a special condition; 2)~the gravitational force is neglected.
期刊介绍:
The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.