关于星图的总边和顶点不规则强度

IF 0.3 Q4 MATHEMATICS
R. Ramdani, A. Salman, H. Assiyatun
{"title":"关于星图的总边和顶点不规则强度","authors":"R. Ramdani, A. Salman, H. Assiyatun","doi":"10.22342/JIMS.25.3.828.314-324","DOIUrl":null,"url":null,"abstract":"Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\\cup E(G)\\rightarrow \\{1,2,\\ldots,k \\}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \\sum_{uv \\in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ if  $w_f(e_1)\\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$  in $E(G)$.  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ if  $w_f(v_1)\\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"8 9‐10","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On The Total Edge and Vertex Irregularity Strength of Some Graphs Obtained from Star\",\"authors\":\"R. Ramdani, A. Salman, H. Assiyatun\",\"doi\":\"10.22342/JIMS.25.3.828.314-324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\\\\cup E(G)\\\\rightarrow \\\\{1,2,\\\\ldots,k \\\\}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \\\\sum_{uv \\\\in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ if  $w_f(e_1)\\\\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$  in $E(G)$.  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ if  $w_f(v_1)\\\\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"8 9‐10\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/JIMS.25.3.828.314-324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/JIMS.25.3.828.314-324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设$G=(V(G),E(G))$为图,$k$为正整数。$G$的总$k$标记是映射$f:V(G)\cup E(G)\rightarrow\{1,2,\ldots,k\}$。标签$f$下的边权重$uv$由$w_f(uv)$表示,并由$w_fil(uv。标记$f$下的顶点权重$v$用$w_f(v)$表示,并由$w_f(v)=f(v)+\sum_{uv\in{E(G)}}{f(uv)}$定义。如果$e(G)$中每两个不同的边$e_1$和$e_2$都有$w_f(e_1)\neq w_f。$G$的总边缘不规则强度,用$tes(G)$表示,是$G$具有边缘不规则总$k$标记的最小$k$。如果$v(G)$中每两个不同的顶点$v_1$和$v_2$都有$w_f(v_1)\neq w_f。$G$的总顶点不规则强度,用$tvs(G)$表示,是$G$具有顶点不规则总$k$标记的最小$k$。本文确定了由星得到的一些图的总边缘不规则强度和总顶点不规则强度,这些图是齿轮图、真菌图和一些星的副本图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On The Total Edge and Vertex Irregularity Strength of Some Graphs Obtained from Star
Let $G=(V(G),E(G))$ be a graph and $k$ be a positive integer. A total $k$-labeling of $G$ is a map $f: V(G)\cup E(G)\rightarrow \{1,2,\ldots,k \}$. The edge weight $uv$ under the labeling $f$ is denoted by $w_f(uv)$ and defined by $w_f(uv)=f(u)+f(uv)+f(v)$. The vertex weight $v$ under the labeling $f$ is denoted by $w_f(v)$ and defined by $w_f(v) = f(v) + \sum_{uv \in{E(G)}} {f(uv)}$. A total $k$-labeling of $G$ is called an edge irregular total $k$-labeling of $G$ if  $w_f(e_1)\neq w_f(e_2)$ for every two distinct edges $e_1$ and $e_2$  in $E(G)$.  The total edge irregularity strength of $G$, denoted by $tes(G)$, is the minimum $k$ for which $G$ has an edge irregular total $k$-labeling.  A total $k$-labeling of $G$ is called a vertex irregular total $k$-labeling of $G$ if  $w_f(v_1)\neq w_f(v_2)$ for every two distinct vertices $v_1$ and $v_2$ in $V(G)$.  The total vertex irregularity strength of $G$, denoted by $tvs(G)$, is the minimum $k$ for which $G$ has a vertex irregular total $k$-labeling.  In this paper, we determine the total edge irregularity strength and the total vertex irregularity strength of some graphs obtained from star, which are gear, fungus, and some copies of stars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信