关于图的不连接和单点并集的同余控制数

IF 0.3 Q4 MATHEMATICS
S. Vaidya, H. Vadhel
{"title":"关于图的不连接和单点并集的同余控制数","authors":"S. Vaidya, H. Vadhel","doi":"10.22342/jims.28.3.1102.251-258","DOIUrl":null,"url":null,"abstract":"A dominating set $D \\subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\\sum_{v \\in V(G)} d(v) \\equiv 0 \\left( \\bmod\\;\\sum_{v \\in D} d(v)\\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"21 21","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Congruent Domination Number of Disjoint and One Point Union of Graphs\",\"authors\":\"S. Vaidya, H. Vadhel\",\"doi\":\"10.22342/jims.28.3.1102.251-258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dominating set $D \\\\subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\\\\sum_{v \\\\in V(G)} d(v) \\\\equiv 0 \\\\left( \\\\bmod\\\\;\\\\sum_{v \\\\in D} d(v)\\\\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\\\\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"21 21\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/jims.28.3.1102.251-258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.28.3.1102.251-258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果$$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$,则称支配集$D \subseteq V(G)$为$G$的同余支配集。$G$的最小同余支配集的最小基数称为$G$的同余支配数,用$\gamma_{cd}(G)$表示。从图的不相交并的阶和图的一点并的角度,建立了图的同余支配数的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Congruent Domination Number of Disjoint and One Point Union of Graphs
A dominating set $D \subseteq V(G)$ is said to be a congruent dominating set of $G$ if $$\sum_{v \in V(G)} d(v) \equiv 0 \left( \bmod\;\sum_{v \in D} d(v)\right).$$The minimum cardinality of a minimal congruent dominating set of $G$ is called the congruent domination number of $G$ which is denoted by $\gamma_{cd}(G)$. We establish the bounds on congruent domination number in terms of order of disjoint union of graphs as well as one point union of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信