用有限迭代法求递归路径模型中相关矩阵的性质

IF 0.6 Q4 STATISTICS & PROBABILITY
M’barek Iaousse, Zouhair Elhadri, M. Hanafi, P. Dolce, Y. Elkettani
{"title":"用有限迭代法求递归路径模型中相关矩阵的性质","authors":"M’barek Iaousse, Zouhair Elhadri, M. Hanafi, P. Dolce, Y. Elkettani","doi":"10.1285/I20705948V13N2P413","DOIUrl":null,"url":null,"abstract":"The present paper announces and demonstrates some useful properties of the impliedcorrelation matrix built by the Finite Iterative Method (Elhadri and Hanafi,2015, 2016; Elhadri et al., 2019) The most important property is that the impliedcorrelation matrix is affine for each of its parameters. In other words, the firstderivative with respect to each parameter does not depend on this parameter. Moreover,two properties affirm that the first and the second derivatives can be builtiteratively using the previous property. The final property shows that the secondderivatives with respect to every pair ofparameters in the same structural equationare null. These properties are very important in the sense that they can be used toconstruct a new computational approach to estimate recursive model parameters.These findings can be exploited in the estimation stage implementation, especiallyin the computation of the Newton Raphson algorithm to make the first and the secondderivatives of the discrepancy function more explicit and simplistic.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"24 9","pages":"413-435"},"PeriodicalIF":0.6000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Properties of the Correlation Matrix Implied by a Recursive Path Model using the Finite Iterative Method\",\"authors\":\"M’barek Iaousse, Zouhair Elhadri, M. Hanafi, P. Dolce, Y. Elkettani\",\"doi\":\"10.1285/I20705948V13N2P413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper announces and demonstrates some useful properties of the impliedcorrelation matrix built by the Finite Iterative Method (Elhadri and Hanafi,2015, 2016; Elhadri et al., 2019) The most important property is that the impliedcorrelation matrix is affine for each of its parameters. In other words, the firstderivative with respect to each parameter does not depend on this parameter. Moreover,two properties affirm that the first and the second derivatives can be builtiteratively using the previous property. The final property shows that the secondderivatives with respect to every pair ofparameters in the same structural equationare null. These properties are very important in the sense that they can be used toconstruct a new computational approach to estimate recursive model parameters.These findings can be exploited in the estimation stage implementation, especiallyin the computation of the Newton Raphson algorithm to make the first and the secondderivatives of the discrepancy function more explicit and simplistic.\",\"PeriodicalId\":44770,\"journal\":{\"name\":\"Electronic Journal of Applied Statistical Analysis\",\"volume\":\"24 9\",\"pages\":\"413-435\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Applied Statistical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1285/I20705948V13N2P413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V13N2P413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

本文宣布并证明了有限迭代法建立的隐相关矩阵的一些有用性质(Elhadri和Hanafi,20152016;Elhadri et al.,2019)。最重要的性质是隐相关矩阵对其每个参数都是仿射的。换句话说,关于每个参数的一阶导数不取决于这个参数。此外,有两个性质证实了一阶导数和二阶导数可以使用前面的性质重复构建。最后的性质表明,对于同一结构方程中的每一对参数的二阶导数为零。这些性质非常重要,因为它们可以用来构建一种新的计算方法来估计递归模型参数。这些发现可以在估计阶段的实现中加以利用,特别是在Newton-Raphson算法的计算中,使差异函数的一阶和二阶导数更加明确和简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of the Correlation Matrix Implied by a Recursive Path Model using the Finite Iterative Method
The present paper announces and demonstrates some useful properties of the impliedcorrelation matrix built by the Finite Iterative Method (Elhadri and Hanafi,2015, 2016; Elhadri et al., 2019) The most important property is that the impliedcorrelation matrix is affine for each of its parameters. In other words, the firstderivative with respect to each parameter does not depend on this parameter. Moreover,two properties affirm that the first and the second derivatives can be builtiteratively using the previous property. The final property shows that the secondderivatives with respect to every pair ofparameters in the same structural equationare null. These properties are very important in the sense that they can be used toconstruct a new computational approach to estimate recursive model parameters.These findings can be exploited in the estimation stage implementation, especiallyin the computation of the Newton Raphson algorithm to make the first and the secondderivatives of the discrepancy function more explicit and simplistic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信