{"title":"乙酰化OBECHE木材的强度、热稳定性和微观结构","authors":"F. Adebawo, O. Y. Ogunsanwo, O. Adegoke, L. Lucia","doi":"10.35812/cellulosechemtechnol.2022.56.83","DOIUrl":null,"url":null,"abstract":"Acetylation is a well-established process to improve dimensional properties of wood and resistance to fungi attack. This study was carried out due to limited studies on the effect of acetylation on mechanical properties, thermal stability, and microstructural aspects of wood. Wood blocks, (each 20×20×60 mm) of Obeche wood were acetylated with acetic anhydride at 120 °C for 60, 120, 180, 240 and 300 minutes. The microstructure and thermal stability of acetylated and unmodified wood blocks were assessed using SEM and TGA, respectively. The maximum compressive strength (MCS//g) and modulus of elasticity (MOE) of the wood specimens were also determined. The SEM indicated no visible damage or defect in the microstructure of all the acetylated wood and no significant differences in the strength properties compared to untreated wood. Acetylated wood showed an increased thermal stability compared to unmodified wood.","PeriodicalId":10130,"journal":{"name":"Cellulose Chemistry and Technology","volume":"6 23","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\"STRENGTH PROPERTIES, THERMAL STABILITY AND MICROSTRUCTURE OF ACETYLATED OBECHE (Triplochiton scleroxylon K. SCHUM) WOOD \\\"\",\"authors\":\"F. Adebawo, O. Y. Ogunsanwo, O. Adegoke, L. Lucia\",\"doi\":\"10.35812/cellulosechemtechnol.2022.56.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acetylation is a well-established process to improve dimensional properties of wood and resistance to fungi attack. This study was carried out due to limited studies on the effect of acetylation on mechanical properties, thermal stability, and microstructural aspects of wood. Wood blocks, (each 20×20×60 mm) of Obeche wood were acetylated with acetic anhydride at 120 °C for 60, 120, 180, 240 and 300 minutes. The microstructure and thermal stability of acetylated and unmodified wood blocks were assessed using SEM and TGA, respectively. The maximum compressive strength (MCS//g) and modulus of elasticity (MOE) of the wood specimens were also determined. The SEM indicated no visible damage or defect in the microstructure of all the acetylated wood and no significant differences in the strength properties compared to untreated wood. Acetylated wood showed an increased thermal stability compared to unmodified wood.\",\"PeriodicalId\":10130,\"journal\":{\"name\":\"Cellulose Chemistry and Technology\",\"volume\":\"6 23\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.35812/cellulosechemtechnol.2022.56.83\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.35812/cellulosechemtechnol.2022.56.83","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
"STRENGTH PROPERTIES, THERMAL STABILITY AND MICROSTRUCTURE OF ACETYLATED OBECHE (Triplochiton scleroxylon K. SCHUM) WOOD "
Acetylation is a well-established process to improve dimensional properties of wood and resistance to fungi attack. This study was carried out due to limited studies on the effect of acetylation on mechanical properties, thermal stability, and microstructural aspects of wood. Wood blocks, (each 20×20×60 mm) of Obeche wood were acetylated with acetic anhydride at 120 °C for 60, 120, 180, 240 and 300 minutes. The microstructure and thermal stability of acetylated and unmodified wood blocks were assessed using SEM and TGA, respectively. The maximum compressive strength (MCS//g) and modulus of elasticity (MOE) of the wood specimens were also determined. The SEM indicated no visible damage or defect in the microstructure of all the acetylated wood and no significant differences in the strength properties compared to untreated wood. Acetylated wood showed an increased thermal stability compared to unmodified wood.
期刊介绍:
Cellulose Chemistry and Technology covers the study and exploitation of the industrial applications of carbohydrate polymers in areas such as food, textiles, paper, wood, adhesives, pharmaceuticals, oil field applications and industrial chemistry.
Topics include:
• studies of structure and properties
• biological and industrial development
• analytical methods
• chemical and microbiological modifications
• interactions with other materials