热机械负荷下强度差对汽轮机转子材料强度和寿命的影响

Q2 Engineering
M. Banaszkiewicz, W. Dudda, J. Badur
{"title":"热机械负荷下强度差对汽轮机转子材料强度和寿命的影响","authors":"M. Banaszkiewicz, W. Dudda, J. Badur","doi":"10.24423/ENGTRANS.964.20190426","DOIUrl":null,"url":null,"abstract":"The paper presents the results of experimental tests and numerical simulations related with the strength differential effect. Tensile and compression tests on 2CrMoV low-alloy steel are performed to evaluate the magnitude of the yield stress difference in tension and compression. The strength differential parameter is then used in the formula for equivalent stress proposed by Burzynski. The material effort calculated using Burzynski and Huber-Mises-Hencky hypotheses was compared for different start-stop cycles. Analytical notch stress-strain correction rules by Neuber and Glinka-Molski were applied to compute elastic-plastic strain amplitudes in rotor circumferential grooves. It was finally shown that the strength differential effect has significant influence on the predicted fatigue life under thermo-mechanical loading.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"88 2","pages":"167-184"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The Effect of Strength Differential on Material Effort and Lifetime of Steam Turbine Rotors Under Thermo-Mechanical Load\",\"authors\":\"M. Banaszkiewicz, W. Dudda, J. Badur\",\"doi\":\"10.24423/ENGTRANS.964.20190426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the results of experimental tests and numerical simulations related with the strength differential effect. Tensile and compression tests on 2CrMoV low-alloy steel are performed to evaluate the magnitude of the yield stress difference in tension and compression. The strength differential parameter is then used in the formula for equivalent stress proposed by Burzynski. The material effort calculated using Burzynski and Huber-Mises-Hencky hypotheses was compared for different start-stop cycles. Analytical notch stress-strain correction rules by Neuber and Glinka-Molski were applied to compute elastic-plastic strain amplitudes in rotor circumferential grooves. It was finally shown that the strength differential effect has significant influence on the predicted fatigue life under thermo-mechanical loading.\",\"PeriodicalId\":38552,\"journal\":{\"name\":\"Engineering Transactions\",\"volume\":\"88 2\",\"pages\":\"167-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24423/ENGTRANS.964.20190426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.964.20190426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了强度差效应的试验结果和数值模拟结果。对2CrMoV低合金钢进行了拉伸和压缩试验,以评估拉伸和压缩屈服应力差的大小。然后将强度微分参数用于Burzynski提出的等效应力公式中。使用Burzynski和Huber-Mises-Hencky假设计算的材料努力在不同的启停周期下进行了比较。采用Neuber和gllinka - molski的缺口应力-应变解析修正规则计算转子周向槽弹塑性应变幅值。结果表明,强度差效应对热机械载荷下的疲劳寿命预测有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Strength Differential on Material Effort and Lifetime of Steam Turbine Rotors Under Thermo-Mechanical Load
The paper presents the results of experimental tests and numerical simulations related with the strength differential effect. Tensile and compression tests on 2CrMoV low-alloy steel are performed to evaluate the magnitude of the yield stress difference in tension and compression. The strength differential parameter is then used in the formula for equivalent stress proposed by Burzynski. The material effort calculated using Burzynski and Huber-Mises-Hencky hypotheses was compared for different start-stop cycles. Analytical notch stress-strain correction rules by Neuber and Glinka-Molski were applied to compute elastic-plastic strain amplitudes in rotor circumferential grooves. It was finally shown that the strength differential effect has significant influence on the predicted fatigue life under thermo-mechanical loading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信