抽象同伦理论的广义稳定性

IF 0.5 Q3 MATHEMATICS
Moritz Groth, Michael Shulman
{"title":"抽象同伦理论的广义稳定性","authors":"Moritz Groth, Michael Shulman","doi":"10.2140/akt.2021.6.1","DOIUrl":null,"url":null,"abstract":"We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints. These characterizations generalize to an abstract notion of \"stability relative to a class of functors\", which includes in particular pointedness, semiadditivity, and ordinary stability. To prove them, we develop the theory of derivators enriched over monoidal left derivators and weighted homotopy limits and colimits therein.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"78 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Generalized stability for abstract homotopy theories\",\"authors\":\"Moritz Groth, Michael Shulman\",\"doi\":\"10.2140/akt.2021.6.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints. These characterizations generalize to an abstract notion of \\\"stability relative to a class of functors\\\", which includes in particular pointedness, semiadditivity, and ordinary stability. To prove them, we develop the theory of derivators enriched over monoidal left derivators and weighted homotopy limits and colimits therein.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2021.6.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2021.6.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

证明了当且仅当同伦有限极限与同伦有限极限可交换,当且仅当同伦有限极限函子有右伴随,当且仅当同伦有限极限函子有左伴随,导子是稳定的。这些特征概括为“相对于一类函子的稳定性”的抽象概念,其中特别包括点性、半可加性和普通稳定性。为了证明它们,我们发展了富于单轴左导子的导子理论以及其中的加权同伦极限和极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized stability for abstract homotopy theories
We show that a derivator is stable if and only if homotopy finite limits and homotopy finite colimits commute, if and only if homotopy finite limit functors have right adjoints, and if and only if homotopy finite colimit functors have left adjoints. These characterizations generalize to an abstract notion of "stability relative to a class of functors", which includes in particular pointedness, semiadditivity, and ordinary stability. To prove them, we develop the theory of derivators enriched over monoidal left derivators and weighted homotopy limits and colimits therein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信