基于偏生建议的矩匹配自适应重要性抽样

IF 0.8 Q3 STATISTICS & PROBABILITY
Shijia Wang, T. Swartz
{"title":"基于偏生建议的矩匹配自适应重要性抽样","authors":"Shijia Wang, T. Swartz","doi":"10.1515/mcma-2022-2106","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers integral approximation via importance sampling where the importance sampler is chosen from a family of skew-Student distributions. This is an alternative class of distributions than is typically considered in importance sampling applications. We describe variate generation and propose adaptive methods for fitting a member of the skew-Student family to a particular integral. We also demonstrate the utility of the approach in several examples.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"268 1‐2","pages":"149 - 162"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Moment matching adaptive importance sampling with skew-student proposals\",\"authors\":\"Shijia Wang, T. Swartz\",\"doi\":\"10.1515/mcma-2022-2106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers integral approximation via importance sampling where the importance sampler is chosen from a family of skew-Student distributions. This is an alternative class of distributions than is typically considered in importance sampling applications. We describe variate generation and propose adaptive methods for fitting a member of the skew-Student family to a particular integral. We also demonstrate the utility of the approach in several examples.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"268 1‐2\",\"pages\":\"149 - 162\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文考虑了重要性抽样的积分逼近方法,其中重要性抽样器从一组偏生分布中选取。这是与重要性抽样应用程序中通常考虑的分布不同的另一类分布。我们描述了变量的产生,并提出了自适应的方法来拟合偏生族的一个成员到一个特定的积分。我们还在几个示例中演示了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment matching adaptive importance sampling with skew-student proposals
Abstract This paper considers integral approximation via importance sampling where the importance sampler is chosen from a family of skew-Student distributions. This is an alternative class of distributions than is typically considered in importance sampling applications. We describe variate generation and propose adaptive methods for fitting a member of the skew-Student family to a particular integral. We also demonstrate the utility of the approach in several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信