基于RBF-NN的美式看跌期权定价:Black-Scholes的新模拟

Q3 Mathematics
El Kharrazi Zaineb, Saoud Sahar, Mahani Zouhir
{"title":"基于RBF-NN的美式看跌期权定价:Black-Scholes的新模拟","authors":"El Kharrazi Zaineb, Saoud Sahar, Mahani Zouhir","doi":"10.2478/mjpaa-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The present work proposes an Artificial Neural Network framework for calculating the price and delta hedging of American put option. We consider a sequence of Radial Basis function Neural Network, where each network learns the difference of the price function according to the Gaussian basis function. Based on Black Scholes partial differential equation, we improve the superiority of Artificial Neural Network by comparing the performance and the results achieved used in classic Monte Carlo Least Square simulation with those obtained by Neural networks in one dimension. Thus, numerical result shows that the Artificial Neural Network solver can reduce the computing time significantly as well as the error training.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"12 1","pages":"78 - 91"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pricing American Put Option using RBF-NN: New Simulation of Black-Scholes\",\"authors\":\"El Kharrazi Zaineb, Saoud Sahar, Mahani Zouhir\",\"doi\":\"10.2478/mjpaa-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present work proposes an Artificial Neural Network framework for calculating the price and delta hedging of American put option. We consider a sequence of Radial Basis function Neural Network, where each network learns the difference of the price function according to the Gaussian basis function. Based on Black Scholes partial differential equation, we improve the superiority of Artificial Neural Network by comparing the performance and the results achieved used in classic Monte Carlo Least Square simulation with those obtained by Neural networks in one dimension. Thus, numerical result shows that the Artificial Neural Network solver can reduce the computing time significantly as well as the error training.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"12 1\",\"pages\":\"78 - 91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文提出了一个用于计算美式看跌期权价格和delta套期保值的人工神经网络框架。我们考虑一个径向基函数神经网络序列,其中每个网络根据高斯基函数学习价格函数的差。在Black-Scholes偏微分方程的基础上,通过对经典蒙特卡罗最小二乘法模拟的性能和结果与神经网络的一维模拟结果进行比较,提高了人工神经网络的优越性。因此,数值结果表明,人工神经网络求解器可以显著减少计算时间和误差训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing American Put Option using RBF-NN: New Simulation of Black-Scholes
Abstract The present work proposes an Artificial Neural Network framework for calculating the price and delta hedging of American put option. We consider a sequence of Radial Basis function Neural Network, where each network learns the difference of the price function according to the Gaussian basis function. Based on Black Scholes partial differential equation, we improve the superiority of Artificial Neural Network by comparing the performance and the results achieved used in classic Monte Carlo Least Square simulation with those obtained by Neural networks in one dimension. Thus, numerical result shows that the Artificial Neural Network solver can reduce the computing time significantly as well as the error training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信