热源对纳米流体在具有磁场且表面质量通量为零的可拉伸薄片上的滞止点流动的影响

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anup Singh Negi , Ashok Kumar , Ashok Kumar , Moh Yaseen , Sawan Kumar Rawat , Akshay Saini
{"title":"热源对纳米流体在具有磁场且表面质量通量为零的可拉伸薄片上的滞止点流动的影响","authors":"Anup Singh Negi ,&nbsp;Ashok Kumar ,&nbsp;Ashok Kumar ,&nbsp;Moh Yaseen ,&nbsp;Sawan Kumar Rawat ,&nbsp;Akshay Saini","doi":"10.1016/j.finmec.2023.100190","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, authors have investigated the heat transference rate of stagnation point flow of a nanofluid over a stretching sheet in a porous medium. The authors have examined the magnetohydrodynamic viscous flow of nanofluid. The transport equations involve Brownian motion and thermophoresis effects. The properties of heat transfer of nanofluids are acknowledged via a numerical algorithm. Diffusivity and conductivity characteristics of fluid are relying on nanoparticles volume fraction and the model is based on energy, momentum, mass conservation, and concentration equations. For the physical significance of the flow model, authors have utilized the zero mass flux condition at the surface. Similarity transformations are used to convert the PDEs (Nonlinear Partial Differential Equations) into a set of coupled ODEs (Ordinary Differential Equations). A built-in bvp4c algorithm in MATLAB software produces convergent implications of nonlinear systems. An exhaustive analysis of pertinent parameters, magnetic, porosity, heat source/sink parameter, etc, is done for clarification of the physical significance. The higher far-field velocity causes the temperature to rise but the heat transfer rate to reduce at the surface. The zero mass flux condition relates to the higher concentration of nanoparticles at the far field in comparison to the surface.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effects of heat source on the stagnation point flow of a nanofluid over a stretchable sheet with magnetic field and zero mass flux at the surface\",\"authors\":\"Anup Singh Negi ,&nbsp;Ashok Kumar ,&nbsp;Ashok Kumar ,&nbsp;Moh Yaseen ,&nbsp;Sawan Kumar Rawat ,&nbsp;Akshay Saini\",\"doi\":\"10.1016/j.finmec.2023.100190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, authors have investigated the heat transference rate of stagnation point flow of a nanofluid over a stretching sheet in a porous medium. The authors have examined the magnetohydrodynamic viscous flow of nanofluid. The transport equations involve Brownian motion and thermophoresis effects. The properties of heat transfer of nanofluids are acknowledged via a numerical algorithm. Diffusivity and conductivity characteristics of fluid are relying on nanoparticles volume fraction and the model is based on energy, momentum, mass conservation, and concentration equations. For the physical significance of the flow model, authors have utilized the zero mass flux condition at the surface. Similarity transformations are used to convert the PDEs (Nonlinear Partial Differential Equations) into a set of coupled ODEs (Ordinary Differential Equations). A built-in bvp4c algorithm in MATLAB software produces convergent implications of nonlinear systems. An exhaustive analysis of pertinent parameters, magnetic, porosity, heat source/sink parameter, etc, is done for clarification of the physical significance. The higher far-field velocity causes the temperature to rise but the heat transfer rate to reduce at the surface. The zero mass flux condition relates to the higher concentration of nanoparticles at the far field in comparison to the surface.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了多孔介质中纳米流体在拉伸薄片上的滞止点流动的传热速率。研究了纳米流体的磁流体动力学黏性流动。输运方程涉及布朗运动和热泳效应。采用数值计算方法对纳米流体的传热特性进行了识别。流体的扩散率和电导率特性依赖于纳米颗粒的体积分数,模型基于能量、动量、质量守恒和浓度方程。考虑到流动模型的物理意义,作者采用了地表零质量通量条件。利用相似变换将非线性偏微分方程转化为一组耦合的常微分方程。MATLAB软件中内置的bvp4c算法产生非线性系统的收敛含义。详细分析了相关参数,如磁性、孔隙度、热源/汇参数等,以阐明其物理意义。较高的远场速度导致表面温度升高,但传热速率降低。零质量通量条件与远场纳米粒子浓度高于表面有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of heat source on the stagnation point flow of a nanofluid over a stretchable sheet with magnetic field and zero mass flux at the surface

In this paper, authors have investigated the heat transference rate of stagnation point flow of a nanofluid over a stretching sheet in a porous medium. The authors have examined the magnetohydrodynamic viscous flow of nanofluid. The transport equations involve Brownian motion and thermophoresis effects. The properties of heat transfer of nanofluids are acknowledged via a numerical algorithm. Diffusivity and conductivity characteristics of fluid are relying on nanoparticles volume fraction and the model is based on energy, momentum, mass conservation, and concentration equations. For the physical significance of the flow model, authors have utilized the zero mass flux condition at the surface. Similarity transformations are used to convert the PDEs (Nonlinear Partial Differential Equations) into a set of coupled ODEs (Ordinary Differential Equations). A built-in bvp4c algorithm in MATLAB software produces convergent implications of nonlinear systems. An exhaustive analysis of pertinent parameters, magnetic, porosity, heat source/sink parameter, etc, is done for clarification of the physical significance. The higher far-field velocity causes the temperature to rise but the heat transfer rate to reduce at the surface. The zero mass flux condition relates to the higher concentration of nanoparticles at the far field in comparison to the surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信