{"title":"α-稳定Lévy过程驱动的昆虫爆发系统的随机分叉和倾翻现象","authors":"S. Yuan, Yang Li, Zhigang Zeng","doi":"10.1051/mmnp/2022037","DOIUrl":null,"url":null,"abstract":"In this work, we mainly characterize stochastic bifurcations and tipping phenomena of insect outbreak dynamical systems driven by $\\alpha$-stable L\\'evy processes. In one-dimensional insect outbreak model, we find the fixed points representing refuge and outbreak from the bifurcation curves, and carry out a sensitivity analysis with respect to small changes in the model parameters, the stability index and the noise intensity. We perform the numerical simulations of dynamical trajectories using Monte Carlo methods, which contribute to looking at stochastic hysteresis phenomenon. As for two-dimensional insect outbreak system, we identify the global stability properties of fixed points and express the probability density function by the stationary solution of the nonlocal Fokker-Planck equation. Through numerical modelling, the phase portrait makes it possible to detect critical transitions among the stable states. It is then worth describing stochastic bifurcation associated with tipping points induced by noise through a careful examination of the dynamical paths of the insect outbreak system with external forcing. The results give new insight into the sensitivity of ecosystems to realistic environmental changes represented by stochastic perturbations.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":"46 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by α-stable Lévy processes\",\"authors\":\"S. Yuan, Yang Li, Zhigang Zeng\",\"doi\":\"10.1051/mmnp/2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we mainly characterize stochastic bifurcations and tipping phenomena of insect outbreak dynamical systems driven by $\\\\alpha$-stable L\\\\'evy processes. In one-dimensional insect outbreak model, we find the fixed points representing refuge and outbreak from the bifurcation curves, and carry out a sensitivity analysis with respect to small changes in the model parameters, the stability index and the noise intensity. We perform the numerical simulations of dynamical trajectories using Monte Carlo methods, which contribute to looking at stochastic hysteresis phenomenon. As for two-dimensional insect outbreak system, we identify the global stability properties of fixed points and express the probability density function by the stationary solution of the nonlocal Fokker-Planck equation. Through numerical modelling, the phase portrait makes it possible to detect critical transitions among the stable states. It is then worth describing stochastic bifurcation associated with tipping points induced by noise through a careful examination of the dynamical paths of the insect outbreak system with external forcing. The results give new insight into the sensitivity of ecosystems to realistic environmental changes represented by stochastic perturbations.\",\"PeriodicalId\":18285,\"journal\":{\"name\":\"Mathematical Modelling of Natural Phenomena\",\"volume\":\"46 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling of Natural Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Stochastic bifurcations and tipping phenomena of insect outbreak systems driven by α-stable Lévy processes
In this work, we mainly characterize stochastic bifurcations and tipping phenomena of insect outbreak dynamical systems driven by $\alpha$-stable L\'evy processes. In one-dimensional insect outbreak model, we find the fixed points representing refuge and outbreak from the bifurcation curves, and carry out a sensitivity analysis with respect to small changes in the model parameters, the stability index and the noise intensity. We perform the numerical simulations of dynamical trajectories using Monte Carlo methods, which contribute to looking at stochastic hysteresis phenomenon. As for two-dimensional insect outbreak system, we identify the global stability properties of fixed points and express the probability density function by the stationary solution of the nonlocal Fokker-Planck equation. Through numerical modelling, the phase portrait makes it possible to detect critical transitions among the stable states. It is then worth describing stochastic bifurcation associated with tipping points induced by noise through a careful examination of the dynamical paths of the insect outbreak system with external forcing. The results give new insight into the sensitivity of ecosystems to realistic environmental changes represented by stochastic perturbations.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.