Xinyu Zhang, Yi Liu, Ye Zhu, Qiang Ma, Gourbesville Philippe, Yanping Qu, Hang Yin
{"title":"中国突发性干旱期间热浪影响的概率分析","authors":"Xinyu Zhang, Yi Liu, Ye Zhu, Qiang Ma, Gourbesville Philippe, Yanping Qu, Hang Yin","doi":"10.2166/nh.2023.022","DOIUrl":null,"url":null,"abstract":"\n \n The increasing concurrences of heatwaves and droughts in the context of global warming have attracted much attention from the scientific community given their devastating social and environmental impacts. In this study, the effects of heatwaves in each adjacent week of flash drought onset on the intensification rate of soil moisture were quantified through a meta-Gaussian-based conditional probability model. Results showed that both heatwaves and flash droughts have become more frequent since the middle of the 1990s. For the seasonal distributions, except for the southwestern region where flash droughts lagged behind heatwaves, there was a good synchronization between the two climate extremes. Strong correlations between heatwaves and flash droughts were found in the northeastern, northern, and southwestern regions. Heatwaves with varied timing of emergence behave differently on the formation of flash droughts, along with significant regional differences. Short-term impending hot conditions were crucial for the breakout of flash droughts, especially for the week when flash droughts were initiated, the emergence of heatwaves was likely to increase the intensification rate of soil moisture by 20% compared to those with no heatwaves in their development stage.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":"73 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic analysis on the influences of heatwaves during the onset of flash droughts over China\",\"authors\":\"Xinyu Zhang, Yi Liu, Ye Zhu, Qiang Ma, Gourbesville Philippe, Yanping Qu, Hang Yin\",\"doi\":\"10.2166/nh.2023.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The increasing concurrences of heatwaves and droughts in the context of global warming have attracted much attention from the scientific community given their devastating social and environmental impacts. In this study, the effects of heatwaves in each adjacent week of flash drought onset on the intensification rate of soil moisture were quantified through a meta-Gaussian-based conditional probability model. Results showed that both heatwaves and flash droughts have become more frequent since the middle of the 1990s. For the seasonal distributions, except for the southwestern region where flash droughts lagged behind heatwaves, there was a good synchronization between the two climate extremes. Strong correlations between heatwaves and flash droughts were found in the northeastern, northern, and southwestern regions. Heatwaves with varied timing of emergence behave differently on the formation of flash droughts, along with significant regional differences. Short-term impending hot conditions were crucial for the breakout of flash droughts, especially for the week when flash droughts were initiated, the emergence of heatwaves was likely to increase the intensification rate of soil moisture by 20% compared to those with no heatwaves in their development stage.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\"73 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.022\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.022","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Probabilistic analysis on the influences of heatwaves during the onset of flash droughts over China
The increasing concurrences of heatwaves and droughts in the context of global warming have attracted much attention from the scientific community given their devastating social and environmental impacts. In this study, the effects of heatwaves in each adjacent week of flash drought onset on the intensification rate of soil moisture were quantified through a meta-Gaussian-based conditional probability model. Results showed that both heatwaves and flash droughts have become more frequent since the middle of the 1990s. For the seasonal distributions, except for the southwestern region where flash droughts lagged behind heatwaves, there was a good synchronization between the two climate extremes. Strong correlations between heatwaves and flash droughts were found in the northeastern, northern, and southwestern regions. Heatwaves with varied timing of emergence behave differently on the formation of flash droughts, along with significant regional differences. Short-term impending hot conditions were crucial for the breakout of flash droughts, especially for the week when flash droughts were initiated, the emergence of heatwaves was likely to increase the intensification rate of soil moisture by 20% compared to those with no heatwaves in their development stage.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.