转变医疗保健:利用基于视觉的神经网络实现智能家居患者监测

IF 1.7 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hicham Gibet Tani, Lamiae Eloutouate, F. Elouaai, M. Bouhorma, Mohamed Walid Hajoub
{"title":"转变医疗保健:利用基于视觉的神经网络实现智能家居患者监测","authors":"Hicham Gibet Tani, Lamiae Eloutouate, F. Elouaai, M. Bouhorma, Mohamed Walid Hajoub","doi":"10.3991/ijoe.v19i10.40381","DOIUrl":null,"url":null,"abstract":"Image captioning is a promising technique for remote monitoring of patient behavior, enabling healthcare providers to identify changes in patient routines and conditions. In this study, we explore the use of transformer neural networks for image caption generation from surveillance camera footage, captured at regular intervals of one minute. Our goal is to develop and evaluate a transformer neural network model, trained and tested on the COCO (common objects in context) dataset, for generating captions that describe patient behavior. Furthermore, we will compare our proposed approach with a traditional convolutional neural network (CNN) method to highlight the prominence of our proposed approach. Our findings demonstrate the potential of transformer neural networks in generating natural language descriptions of patient behavior, which can provide valuable insights for healthcare providers. The use of such technology can allow for more efficient monitoring of patients, enabling timely interventions when necessary. Moreover, our study highlights the potential of transformer neural networks in identifying patterns and trends in patient behavior over time, which can aid in developing personalized healthcare plans.","PeriodicalId":36900,"journal":{"name":"International Journal of Online and Biomedical Engineering","volume":"212 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Healthcare: Leveraging Vision-Based Neural Networks for Smart Home Patient Monitoring\",\"authors\":\"Hicham Gibet Tani, Lamiae Eloutouate, F. Elouaai, M. Bouhorma, Mohamed Walid Hajoub\",\"doi\":\"10.3991/ijoe.v19i10.40381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image captioning is a promising technique for remote monitoring of patient behavior, enabling healthcare providers to identify changes in patient routines and conditions. In this study, we explore the use of transformer neural networks for image caption generation from surveillance camera footage, captured at regular intervals of one minute. Our goal is to develop and evaluate a transformer neural network model, trained and tested on the COCO (common objects in context) dataset, for generating captions that describe patient behavior. Furthermore, we will compare our proposed approach with a traditional convolutional neural network (CNN) method to highlight the prominence of our proposed approach. Our findings demonstrate the potential of transformer neural networks in generating natural language descriptions of patient behavior, which can provide valuable insights for healthcare providers. The use of such technology can allow for more efficient monitoring of patients, enabling timely interventions when necessary. Moreover, our study highlights the potential of transformer neural networks in identifying patterns and trends in patient behavior over time, which can aid in developing personalized healthcare plans.\",\"PeriodicalId\":36900,\"journal\":{\"name\":\"International Journal of Online and Biomedical Engineering\",\"volume\":\"212 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Online and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3991/ijoe.v19i10.40381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v19i10.40381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

图像字幕是远程监控患者行为的一种很有前途的技术,它使医疗保健提供者能够识别患者常规和病情的变化。在这项研究中,我们探索使用变压器神经网络从监控摄像机镜头中生成图像标题,每隔一分钟捕获一次。我们的目标是开发和评估一个变压器神经网络模型,在COCO(上下文中的公共对象)数据集上进行训练和测试,以生成描述患者行为的标题。此外,我们将我们提出的方法与传统的卷积神经网络(CNN)方法进行比较,以突出我们提出的方法的突出性。我们的发现证明了变压器神经网络在生成患者行为的自然语言描述方面的潜力,这可以为医疗保健提供者提供有价值的见解。使用这种技术可以更有效地监测患者,并在必要时进行及时干预。此外,我们的研究强调了变压器神经网络在识别患者行为模式和趋势方面的潜力,这有助于制定个性化的医疗保健计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming Healthcare: Leveraging Vision-Based Neural Networks for Smart Home Patient Monitoring
Image captioning is a promising technique for remote monitoring of patient behavior, enabling healthcare providers to identify changes in patient routines and conditions. In this study, we explore the use of transformer neural networks for image caption generation from surveillance camera footage, captured at regular intervals of one minute. Our goal is to develop and evaluate a transformer neural network model, trained and tested on the COCO (common objects in context) dataset, for generating captions that describe patient behavior. Furthermore, we will compare our proposed approach with a traditional convolutional neural network (CNN) method to highlight the prominence of our proposed approach. Our findings demonstrate the potential of transformer neural networks in generating natural language descriptions of patient behavior, which can provide valuable insights for healthcare providers. The use of such technology can allow for more efficient monitoring of patients, enabling timely interventions when necessary. Moreover, our study highlights the potential of transformer neural networks in identifying patterns and trends in patient behavior over time, which can aid in developing personalized healthcare plans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
46.20%
发文量
143
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信