区间线性规划的最佳、最差和半强最优值

IF 0.5 Q4 ECONOMICS
E. Garajová, M. Hladík, M. Rada
{"title":"区间线性规划的最佳、最差和半强最优值","authors":"E. Garajová, M. Hladík, M. Rada","doi":"10.17535/crorr.2019.0018","DOIUrl":null,"url":null,"abstract":"Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":"319 12","pages":"201-209"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17535/crorr.2019.0018","citationCount":"2","resultStr":"{\"title\":\"The best, the worst and the semi-strong: optimal values in interval linear programming\",\"authors\":\"E. Garajová, M. Hladík, M. Rada\",\"doi\":\"10.17535/crorr.2019.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\"319 12\",\"pages\":\"201-209\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17535/crorr.2019.0018\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2019.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2019.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

区间规划为不确定性下的优化问题建模提供了一种现代方法。传统上,确定最优值范围的最佳和最差最优值被认为是区间规划的主要求解概念。在本文中,我们提出了半强值的概念,作为最佳和最差最优值的推广。半强值扩展了最近引入的半强最优解的概念,使该模型能够涵盖更广泛的应用。对于一般形式的区间线性规划,我们提出了检验相对于目标向量、右手边向量或约束矩阵强的值的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The best, the worst and the semi-strong: optimal values in interval linear programming
Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
5
审稿时长
22 weeks
期刊介绍: Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信