{"title":"区间线性规划的最佳、最差和半强最优值","authors":"E. Garajová, M. Hladík, M. Rada","doi":"10.17535/crorr.2019.0018","DOIUrl":null,"url":null,"abstract":"Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":"319 12","pages":"201-209"},"PeriodicalIF":0.5000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17535/crorr.2019.0018","citationCount":"2","resultStr":"{\"title\":\"The best, the worst and the semi-strong: optimal values in interval linear programming\",\"authors\":\"E. Garajová, M. Hladík, M. Rada\",\"doi\":\"10.17535/crorr.2019.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.\",\"PeriodicalId\":44065,\"journal\":{\"name\":\"Croatian Operational Research Review\",\"volume\":\"319 12\",\"pages\":\"201-209\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17535/crorr.2019.0018\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Croatian Operational Research Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17535/crorr.2019.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2019.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
The best, the worst and the semi-strong: optimal values in interval linear programming
Interval programming provides one of the modern approaches to modeling optimization problems under uncertainty. Traditionally, the best and the worst optimal values determining the optimal value range are considered as the main solution concept for interval programs. In this paper, we present the concept of semi-strong values as a generalization of the best and the worst optimal values. Semi-strong values extend the recently introduced notion of semi-strong optimal solutions, allowing the model to cover a wider range of applications. We propose conditions for testing values that are strong with respect to the objective vector, right-hand-side vector or the constraint matrix for interval linear programs in the general form.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.