具有偏斜分布的排序集抽样的简单不等分配过程

Q3 Mathematics
Dinesh S. Bhoj, Girish Chandra
{"title":"具有偏斜分布的排序集抽样的简单不等分配过程","authors":"Dinesh S. Bhoj, Girish Chandra","doi":"10.22237/jmasm/1604189700","DOIUrl":null,"url":null,"abstract":"A practical unbalanced Ranked Set Sampling (RSS) model is proposed to estimate the population mean of positively skewed distributions. The gains in the relative precisions of the population mean based on the proposed model for chosen distributions are uniformly higher than those based on balanced RSS and the t-model proposed in Kaur et al. (1997). The relative precisions of the simple unequal allocation model are, with one exception, better than (s, t)-model which is better than t-model. The relative precision of the proposed model is very close or equal to the optimal Neyman allocation model.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"146 2","pages":"22"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Simple Unequal Allocation Procedure for Ranked Set Sampling with Skew Distributions\",\"authors\":\"Dinesh S. Bhoj, Girish Chandra\",\"doi\":\"10.22237/jmasm/1604189700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A practical unbalanced Ranked Set Sampling (RSS) model is proposed to estimate the population mean of positively skewed distributions. The gains in the relative precisions of the population mean based on the proposed model for chosen distributions are uniformly higher than those based on balanced RSS and the t-model proposed in Kaur et al. (1997). The relative precisions of the simple unequal allocation model are, with one exception, better than (s, t)-model which is better than t-model. The relative precision of the proposed model is very close or equal to the optimal Neyman allocation model.\",\"PeriodicalId\":47201,\"journal\":{\"name\":\"Journal of Modern Applied Statistical Methods\",\"volume\":\"146 2\",\"pages\":\"22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Applied Statistical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22237/jmasm/1604189700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1604189700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种实用的不平衡秩集抽样(RSS)模型来估计正偏分布的总体均值。基于所提出的用于所选分布的模型的总体平均值的相对精度的增益均匀地高于基于平衡RSS和Kaur等人提出的t-模型的增益。(1997)。除了一个例外,简单的不平等分配模型的相对精度优于(s,t)-模型,后者优于t模型。所提出的模型的相对精度非常接近或等于最优奈曼分配模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Unequal Allocation Procedure for Ranked Set Sampling with Skew Distributions
A practical unbalanced Ranked Set Sampling (RSS) model is proposed to estimate the population mean of positively skewed distributions. The gains in the relative precisions of the population mean based on the proposed model for chosen distributions are uniformly higher than those based on balanced RSS and the t-model proposed in Kaur et al. (1997). The relative precisions of the simple unequal allocation model are, with one exception, better than (s, t)-model which is better than t-model. The relative precision of the proposed model is very close or equal to the optimal Neyman allocation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信