Yong Yang, Xiaotong Ren, Yiqiao Li, Dayuan Yuan, Yali Guo, Kun Zhang, S. Shen
{"title":"竖管爬升膜海水淡化系统的热优化研究","authors":"Yong Yang, Xiaotong Ren, Yiqiao Li, Dayuan Yuan, Yali Guo, Kun Zhang, S. Shen","doi":"10.1093/ijlct/ctad029","DOIUrl":null,"url":null,"abstract":"\n Based on the pinch theory and energy cascade utilization principle, the performance of a multi effect shipboard vertical tube climbing film desalination system combined thermal vapour compression with different preheating configuration has been analyzed. The mathematical model is established for thermodynamic simulation, in which various thermodynamic losses caused by boiling point elevation and pressure drop are considered, and the effective heat transfer temperature difference and temperature difference of hot side are used to analyze the influences of heating steam temperature, final effect evaporation temperature, and concentration ratio on thermal performance including gained output ratio (GOR), specific heat transfer area for different preheating configuration. The results show that the internal average effective heat transfer temperature difference determines characteristics of multi-effect distillation system. While for system with similar average effective heat transfer temperature, the temperature difference of hot side is the controlling parameter. And the energy cascade utilization principle shows the controlling attribute in multi-effect distillation thermodynamic system, as GOR is improved mainly due to utilization of the secondary energy and residual energy of the heating steam for preheating process.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":"17 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal optimization research of vertical tube climbing film desalination system\",\"authors\":\"Yong Yang, Xiaotong Ren, Yiqiao Li, Dayuan Yuan, Yali Guo, Kun Zhang, S. Shen\",\"doi\":\"10.1093/ijlct/ctad029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Based on the pinch theory and energy cascade utilization principle, the performance of a multi effect shipboard vertical tube climbing film desalination system combined thermal vapour compression with different preheating configuration has been analyzed. The mathematical model is established for thermodynamic simulation, in which various thermodynamic losses caused by boiling point elevation and pressure drop are considered, and the effective heat transfer temperature difference and temperature difference of hot side are used to analyze the influences of heating steam temperature, final effect evaporation temperature, and concentration ratio on thermal performance including gained output ratio (GOR), specific heat transfer area for different preheating configuration. The results show that the internal average effective heat transfer temperature difference determines characteristics of multi-effect distillation system. While for system with similar average effective heat transfer temperature, the temperature difference of hot side is the controlling parameter. And the energy cascade utilization principle shows the controlling attribute in multi-effect distillation thermodynamic system, as GOR is improved mainly due to utilization of the secondary energy and residual energy of the heating steam for preheating process.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Thermal optimization research of vertical tube climbing film desalination system
Based on the pinch theory and energy cascade utilization principle, the performance of a multi effect shipboard vertical tube climbing film desalination system combined thermal vapour compression with different preheating configuration has been analyzed. The mathematical model is established for thermodynamic simulation, in which various thermodynamic losses caused by boiling point elevation and pressure drop are considered, and the effective heat transfer temperature difference and temperature difference of hot side are used to analyze the influences of heating steam temperature, final effect evaporation temperature, and concentration ratio on thermal performance including gained output ratio (GOR), specific heat transfer area for different preheating configuration. The results show that the internal average effective heat transfer temperature difference determines characteristics of multi-effect distillation system. While for system with similar average effective heat transfer temperature, the temperature difference of hot side is the controlling parameter. And the energy cascade utilization principle shows the controlling attribute in multi-effect distillation thermodynamic system, as GOR is improved mainly due to utilization of the secondary energy and residual energy of the heating steam for preheating process.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.