{"title":"关于一个包含齐次形式的振荡积分","authors":"S. Yamagishi","doi":"10.7169/facm/1775","DOIUrl":null,"url":null,"abstract":"Let $F \\in \\mathbb{R}[x_1, \\ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \\dim V_{F}^*) > 4$, where $V_F^*$ is the singular locus of $V(F) = \\{ \\mathbf{z} \\in {\\mathbb{C}}^n: F(\\mathbf{z}) = 0 \\}$. Suppose there exists $\\mathbf{x}_0 \\in (0,1)^n \\cap (V(F) \\backslash V_F^*)$. Let $\\mathbf{t} = (t_1, \\ldots, t_n) \\in \\mathbb{R}^n$. Then for a smooth function $\\varpi:\\mathbb{R}^n \\rightarrow \\mathbb{R}$ with its support contained in a small neighbourhood of $\\mathbf{x}_0$, we prove $$ \\Big{|} \\int_{0}^{\\infty} \\cdots \\int_{0}^{\\infty} \\varpi(\\mathbf{x}) x_1^{i t_1} \\cdots x_n^{i t_n} e^{2 \\pi i \\tau F(\\mathbf{x})} d \\mathbf{x} \\Big{|} \\ll \\min \\{ 1, |\\tau|^{-1} \\}, $$ where the implicit constant is independent of $\\tau$ and $\\mathbf{t}$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On an oscillatory integral involving a homogeneous form\",\"authors\":\"S. Yamagishi\",\"doi\":\"10.7169/facm/1775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F \\\\in \\\\mathbb{R}[x_1, \\\\ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \\\\dim V_{F}^*) > 4$, where $V_F^*$ is the singular locus of $V(F) = \\\\{ \\\\mathbf{z} \\\\in {\\\\mathbb{C}}^n: F(\\\\mathbf{z}) = 0 \\\\}$. Suppose there exists $\\\\mathbf{x}_0 \\\\in (0,1)^n \\\\cap (V(F) \\\\backslash V_F^*)$. Let $\\\\mathbf{t} = (t_1, \\\\ldots, t_n) \\\\in \\\\mathbb{R}^n$. Then for a smooth function $\\\\varpi:\\\\mathbb{R}^n \\\\rightarrow \\\\mathbb{R}$ with its support contained in a small neighbourhood of $\\\\mathbf{x}_0$, we prove $$ \\\\Big{|} \\\\int_{0}^{\\\\infty} \\\\cdots \\\\int_{0}^{\\\\infty} \\\\varpi(\\\\mathbf{x}) x_1^{i t_1} \\\\cdots x_n^{i t_n} e^{2 \\\\pi i \\\\tau F(\\\\mathbf{x})} d \\\\mathbf{x} \\\\Big{|} \\\\ll \\\\min \\\\{ 1, |\\\\tau|^{-1} \\\\}, $$ where the implicit constant is independent of $\\\\tau$ and $\\\\mathbf{t}$.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/1775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/1775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On an oscillatory integral involving a homogeneous form
Let $F \in \mathbb{R}[x_1, \ldots, x_n]$ be a homogeneous form of degree $d > 1$ satisfying $(n - \dim V_{F}^*) > 4$, where $V_F^*$ is the singular locus of $V(F) = \{ \mathbf{z} \in {\mathbb{C}}^n: F(\mathbf{z}) = 0 \}$. Suppose there exists $\mathbf{x}_0 \in (0,1)^n \cap (V(F) \backslash V_F^*)$. Let $\mathbf{t} = (t_1, \ldots, t_n) \in \mathbb{R}^n$. Then for a smooth function $\varpi:\mathbb{R}^n \rightarrow \mathbb{R}$ with its support contained in a small neighbourhood of $\mathbf{x}_0$, we prove $$ \Big{|} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \varpi(\mathbf{x}) x_1^{i t_1} \cdots x_n^{i t_n} e^{2 \pi i \tau F(\mathbf{x})} d \mathbf{x} \Big{|} \ll \min \{ 1, |\tau|^{-1} \}, $$ where the implicit constant is independent of $\tau$ and $\mathbf{t}$.