正特征超曲面奇异性的表征

IF 0.6 4区 数学 Q3 MATHEMATICS
Amir Shehzad, M. Binyamin, H. Mahmood
{"title":"正特征超曲面奇异性的表征","authors":"Amir Shehzad, M. Binyamin, H. Mahmood","doi":"10.33044/revuma.v61n2a17","DOIUrl":null,"url":null,"abstract":"The classification of right unimodal and bimodal hypersurface singularities over a field of positive characteristic was given by H. D. Nguyen. The classification is described in the style of Arnold and not in an algorithmic way. This classification was characterized by M. A. Binyamin et al. [Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 61(109) (2018), no. 3, 333–343] for the case when the corank of hypersurface singularities is ≤ 2. The aim of this article is to characterize the right unimodal and bimodal hypersurface singularities of corank 3 in an algorithmic way by means of easily computable invariants such as the multiplicity, the Milnor number of the given equation, and its blowing-up. On the basis of this characterization we implement an algorithm to compute the type of the right unimodal and bimodal hypersurface singularities without computing the normal form in the computer algebra system Singular.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of hypersurface singularities in positive characteristic\",\"authors\":\"Amir Shehzad, M. Binyamin, H. Mahmood\",\"doi\":\"10.33044/revuma.v61n2a17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of right unimodal and bimodal hypersurface singularities over a field of positive characteristic was given by H. D. Nguyen. The classification is described in the style of Arnold and not in an algorithmic way. This classification was characterized by M. A. Binyamin et al. [Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 61(109) (2018), no. 3, 333–343] for the case when the corank of hypersurface singularities is ≤ 2. The aim of this article is to characterize the right unimodal and bimodal hypersurface singularities of corank 3 in an algorithmic way by means of easily computable invariants such as the multiplicity, the Milnor number of the given equation, and its blowing-up. On the basis of this characterization we implement an algorithm to compute the type of the right unimodal and bimodal hypersurface singularities without computing the normal form in the computer algebra system Singular.\",\"PeriodicalId\":54469,\"journal\":{\"name\":\"Revista De La Union Matematica Argentina\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Union Matematica Argentina\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.33044/revuma.v61n2a17\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.v61n2a17","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

H. D. Nguyen给出了正特征域上的右单峰和双峰超曲面奇异的分类。分类是用阿诺德的方式描述的,而不是用算法的方式。M. A. Binyamin等人对该分类进行了描述。数学。Soc。科学。数学。鲁曼尼(N.S.) 61(109) (2018), no。[3,333 - 343]对于超曲面奇点的corank≤2的情况。本文的目的是利用多重性、给定方程的米尔诺数及其爆破等易计算的不变量,用算法刻画corank 3的右单峰和双峰超曲面奇异性。在此刻画的基础上,我们实现了一种在计算机代数系统奇异中不计算范式的情况下计算右单峰和双峰超曲面奇异类型的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of hypersurface singularities in positive characteristic
The classification of right unimodal and bimodal hypersurface singularities over a field of positive characteristic was given by H. D. Nguyen. The classification is described in the style of Arnold and not in an algorithmic way. This classification was characterized by M. A. Binyamin et al. [Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 61(109) (2018), no. 3, 333–343] for the case when the corank of hypersurface singularities is ≤ 2. The aim of this article is to characterize the right unimodal and bimodal hypersurface singularities of corank 3 in an algorithmic way by means of easily computable invariants such as the multiplicity, the Milnor number of the given equation, and its blowing-up. On the basis of this characterization we implement an algorithm to compute the type of the right unimodal and bimodal hypersurface singularities without computing the normal form in the computer algebra system Singular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信