R. Krishna, Rui Zhang, Siddharth Ravichandran, T. Fan, A. Hosseinnia, Jose Lopez-Ninantay, Fuhan Liu, M. Kathaperumal, Madhavan Swaminathan, A. Adibi
{"title":"基于异质集成的多芯片通信聚合物波导光子互连","authors":"R. Krishna, Rui Zhang, Siddharth Ravichandran, T. Fan, A. Hosseinnia, Jose Lopez-Ninantay, Fuhan Liu, M. Kathaperumal, Madhavan Swaminathan, A. Adibi","doi":"10.1117/1.JNP.16.036002","DOIUrl":null,"url":null,"abstract":"Abstract. An on-package optical interconnect design is proposed for the first time, with silicon photonics in conjunction with the polymer-on-glass interposer technology to enable heterogeneous integration. Glass substrates are used for low-cost, high reliability packaging while silicon photonics allows for high-speed modulation and wavelength division multiplexing within a small footprint. By combining silicon-photonic and benzo-cyclobutene-on-glass interposer technologies, we propose a scalable on-package photonic interconnect that can provide data rates >224 Gb / s for medium-reach links. Our proposed interconnect considers microring modulators and high-speed detectors available in photonic-foundry processes. We present the power-budget analysis to identify the key limiting parameters toward achieving an energy consumption of < 1 pJ / bit.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":" 37","pages":"036002 - 036002"},"PeriodicalIF":1.1000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer waveguide photonic interconnect for multichip communications-based heterogeneous integration\",\"authors\":\"R. Krishna, Rui Zhang, Siddharth Ravichandran, T. Fan, A. Hosseinnia, Jose Lopez-Ninantay, Fuhan Liu, M. Kathaperumal, Madhavan Swaminathan, A. Adibi\",\"doi\":\"10.1117/1.JNP.16.036002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. An on-package optical interconnect design is proposed for the first time, with silicon photonics in conjunction with the polymer-on-glass interposer technology to enable heterogeneous integration. Glass substrates are used for low-cost, high reliability packaging while silicon photonics allows for high-speed modulation and wavelength division multiplexing within a small footprint. By combining silicon-photonic and benzo-cyclobutene-on-glass interposer technologies, we propose a scalable on-package photonic interconnect that can provide data rates >224 Gb / s for medium-reach links. Our proposed interconnect considers microring modulators and high-speed detectors available in photonic-foundry processes. We present the power-budget analysis to identify the key limiting parameters toward achieving an energy consumption of < 1 pJ / bit.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\" 37\",\"pages\":\"036002 - 036002\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.16.036002\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.16.036002","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Polymer waveguide photonic interconnect for multichip communications-based heterogeneous integration
Abstract. An on-package optical interconnect design is proposed for the first time, with silicon photonics in conjunction with the polymer-on-glass interposer technology to enable heterogeneous integration. Glass substrates are used for low-cost, high reliability packaging while silicon photonics allows for high-speed modulation and wavelength division multiplexing within a small footprint. By combining silicon-photonic and benzo-cyclobutene-on-glass interposer technologies, we propose a scalable on-package photonic interconnect that can provide data rates >224 Gb / s for medium-reach links. Our proposed interconnect considers microring modulators and high-speed detectors available in photonic-foundry processes. We present the power-budget analysis to identify the key limiting parameters toward achieving an energy consumption of < 1 pJ / bit.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.