区间截尾数据拟合广义比值率模型的期望最大化算法

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Jie Zhou, Jiajia Zhang, Wenbin Lu
{"title":"区间截尾数据拟合广义比值率模型的期望最大化算法","authors":"Jie Zhou, Jiajia Zhang, Wenbin Lu","doi":"10.1002/sim.7204","DOIUrl":null,"url":null,"abstract":"The generalized odds‐rate model is a class of semiparametric regression models, which includes the proportional hazards and proportional odds models as special cases. There are few works on estimation of the generalized odds‐rate model with interval censored data because of the challenges in maximizing the complex likelihood function. In this paper, we propose a gamma‐Poisson data augmentation approach to develop an Expectation Maximization algorithm, which can be used to fit the generalized odds‐rate model to interval censored data. The proposed Expectation Maximization algorithm is easy to implement and is computationally efficient. The performance of the proposed method is evaluated by comprehensive simulation studies and illustrated through applications to datasets from breast cancer and hemophilia studies. In order to make the proposed method easy to use in practice, an R package ‘ICGOR’ was developed. Copyright © 2016 John Wiley & Sons, Ltd.","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"120 8","pages":"1157 - 1171"},"PeriodicalIF":1.8000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/sim.7204","citationCount":"15","resultStr":"{\"title\":\"An Expectation Maximization algorithm for fitting the generalized odds‐rate model to interval censored data\",\"authors\":\"Jie Zhou, Jiajia Zhang, Wenbin Lu\",\"doi\":\"10.1002/sim.7204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized odds‐rate model is a class of semiparametric regression models, which includes the proportional hazards and proportional odds models as special cases. There are few works on estimation of the generalized odds‐rate model with interval censored data because of the challenges in maximizing the complex likelihood function. In this paper, we propose a gamma‐Poisson data augmentation approach to develop an Expectation Maximization algorithm, which can be used to fit the generalized odds‐rate model to interval censored data. The proposed Expectation Maximization algorithm is easy to implement and is computationally efficient. The performance of the proposed method is evaluated by comprehensive simulation studies and illustrated through applications to datasets from breast cancer and hemophilia studies. In order to make the proposed method easy to use in practice, an R package ‘ICGOR’ was developed. Copyright © 2016 John Wiley & Sons, Ltd.\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"120 8\",\"pages\":\"1157 - 1171\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2017-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/sim.7204\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.7204\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.7204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 15

摘要

广义比值率模型是一类半参数回归模型,包括作为特例的比例风险和比例比值率模型。由于在最大化复似然函数方面存在挑战,因此很少有关于区间截尾数据的广义比值率模型的估计工作。在本文中,我们提出了一种伽马-泊松数据增强方法来开发期望最大化算法,该算法可用于将广义比值率模型拟合到区间删失数据。所提出的期望最大化算法易于实现,并且计算效率高。通过综合模拟研究评估了所提出方法的性能,并通过应用于癌症和血友病研究的数据集进行了说明。为了使所提出的方法易于在实践中使用,开发了一个R包“ICGOR”。版权所有©2016 John Wiley&Sons,有限公司。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Expectation Maximization algorithm for fitting the generalized odds‐rate model to interval censored data
The generalized odds‐rate model is a class of semiparametric regression models, which includes the proportional hazards and proportional odds models as special cases. There are few works on estimation of the generalized odds‐rate model with interval censored data because of the challenges in maximizing the complex likelihood function. In this paper, we propose a gamma‐Poisson data augmentation approach to develop an Expectation Maximization algorithm, which can be used to fit the generalized odds‐rate model to interval censored data. The proposed Expectation Maximization algorithm is easy to implement and is computationally efficient. The performance of the proposed method is evaluated by comprehensive simulation studies and illustrated through applications to datasets from breast cancer and hemophilia studies. In order to make the proposed method easy to use in practice, an R package ‘ICGOR’ was developed. Copyright © 2016 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信