双泡等变波图的连续时间孤子分辨率

Pub Date : 2020-10-23 DOI:10.4310/mrl.2022.v29.n6.a5
Jacek Jendrej, A. Lawrie
{"title":"双泡等变波图的连续时间孤子分辨率","authors":"Jacek Jendrej, A. Lawrie","doi":"10.4310/mrl.2022.v29.n6.a5","DOIUrl":null,"url":null,"abstract":"We consider the energy-critical wave maps equation from 1+2 dimensional Minkowski space into the 2-sphere, in the equivariant case. We prove that if a wave map decomposes, along a sequence of times, into a superposition of at most two rescaled harmonic maps (bubbles) and radiation, then such a decomposition holds for continuous time. If the equivariance degree equals one or two, we deduce, as a consequence of sequential soliton resolution results of Cote, and Jia and Kenig, that any topologically trivial equivariant wave map with energy less than four times the energy of the bubble asymptotically decomposes into (at most two) bubbles and radiation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Continuous time soliton resolution for two-bubble equivariant wave maps\",\"authors\":\"Jacek Jendrej, A. Lawrie\",\"doi\":\"10.4310/mrl.2022.v29.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the energy-critical wave maps equation from 1+2 dimensional Minkowski space into the 2-sphere, in the equivariant case. We prove that if a wave map decomposes, along a sequence of times, into a superposition of at most two rescaled harmonic maps (bubbles) and radiation, then such a decomposition holds for continuous time. If the equivariance degree equals one or two, we deduce, as a consequence of sequential soliton resolution results of Cote, and Jia and Kenig, that any topologically trivial equivariant wave map with energy less than four times the energy of the bubble asymptotically decomposes into (at most two) bubbles and radiation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/mrl.2022.v29.n6.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2022.v29.n6.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在等变情况下,我们考虑从1+2维闵可夫斯基空间到2球的能量临界波映射方程。我们证明,如果一个波图沿着时间序列分解成至多两个重标度谐波图(气泡)和辐射的叠加,那么这种分解在连续时间内成立。如果等变度等于1或2,根据Cote、Jia和Kenig的连续孤子解析结果,我们推断,任何能量小于气泡能量四倍的拓扑平凡等变波图都渐近分解为(最多两个)气泡和辐射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Continuous time soliton resolution for two-bubble equivariant wave maps
We consider the energy-critical wave maps equation from 1+2 dimensional Minkowski space into the 2-sphere, in the equivariant case. We prove that if a wave map decomposes, along a sequence of times, into a superposition of at most two rescaled harmonic maps (bubbles) and radiation, then such a decomposition holds for continuous time. If the equivariance degree equals one or two, we deduce, as a consequence of sequential soliton resolution results of Cote, and Jia and Kenig, that any topologically trivial equivariant wave map with energy less than four times the energy of the bubble asymptotically decomposes into (at most two) bubbles and radiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信