六次Dwork超曲面与Greene超几何函数

Pub Date : 2020-10-25 DOI:10.32917/h2020097
Satoshi Kumabe
{"title":"六次Dwork超曲面与Greene超几何函数","authors":"Satoshi Kumabe","doi":"10.32917/h2020097","DOIUrl":null,"url":null,"abstract":"In this paper, we give a formula for the number of rational points on the Dwork hypersurfaces of degree six over finite fields by using Greene's finite-field hypergeometric function, which is a generalization of Goodson's formula for the Dwork hypersurfaces of degree four [1, Theorem 1.1]. Our formula is also a higher-dimensional and a finite field analogue of MatsumotoTerasoma-Yamazaki's formula. Furthermore, we also explain the relation between our formula and Miyatani's formula.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dwork hypersurfaces of degree six and Greene’s hypergeometric function\",\"authors\":\"Satoshi Kumabe\",\"doi\":\"10.32917/h2020097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a formula for the number of rational points on the Dwork hypersurfaces of degree six over finite fields by using Greene's finite-field hypergeometric function, which is a generalization of Goodson's formula for the Dwork hypersurfaces of degree four [1, Theorem 1.1]. Our formula is also a higher-dimensional and a finite field analogue of MatsumotoTerasoma-Yamazaki's formula. Furthermore, we also explain the relation between our formula and Miyatani's formula.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/h2020097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/h2020097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用Greene的有限域超几何函数,推广了Goodson关于四次Dwork超曲面的公式[1,定理1.1],给出了有限域上六次Dwork超曲面上有理点个数的公式。我们的公式也是MatsumotoTerasoma-Yamazaki公式的高维有限域模拟。此外,我们还解释了我们的公式与Miyatani公式的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Dwork hypersurfaces of degree six and Greene’s hypergeometric function
In this paper, we give a formula for the number of rational points on the Dwork hypersurfaces of degree six over finite fields by using Greene's finite-field hypergeometric function, which is a generalization of Goodson's formula for the Dwork hypersurfaces of degree four [1, Theorem 1.1]. Our formula is also a higher-dimensional and a finite field analogue of MatsumotoTerasoma-Yamazaki's formula. Furthermore, we also explain the relation between our formula and Miyatani's formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信