旋转在三维欧拉方程中的稳定作用

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yan Guo, Chunyan Huang, Benoit Pausader, Klaus Widmayer
{"title":"旋转在三维欧拉方程中的稳定作用","authors":"Yan Guo,&nbsp;Chunyan Huang,&nbsp;Benoit Pausader,&nbsp;Klaus Widmayer","doi":"10.1002/cpa.22107","DOIUrl":null,"url":null,"abstract":"<p>While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Euler equations in <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math> with a <i>fixed</i> speed of rotation. We show that for any <math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\mathcal {M}&gt; 0$</annotation>\n </semantics></math>, axisymmetric initial data of sufficiently small size ε lead to solutions that exist for a long time at least <math>\n <semantics>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$\\varepsilon ^{-\\mathcal {M}}$</annotation>\n </semantics></math> and disperse. This is a manifestation of the stabilizing effect of rotation, regardless of its speed. To achieve this we develop an anisotropic framework that naturally builds on the available symmetries. This allows for a precise quantification and control of the geometry of nonlinear interactions, while at the same time giving enough information to obtain dispersive decay via adapted linear dispersive estimates.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22107","citationCount":"5","resultStr":"{\"title\":\"On the stabilizing effect of rotation in the 3d Euler equations\",\"authors\":\"Yan Guo,&nbsp;Chunyan Huang,&nbsp;Benoit Pausader,&nbsp;Klaus Widmayer\",\"doi\":\"10.1002/cpa.22107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Euler equations in <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^3$</annotation>\\n </semantics></math> with a <i>fixed</i> speed of rotation. We show that for any <math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\mathcal {M}&gt; 0$</annotation>\\n </semantics></math>, axisymmetric initial data of sufficiently small size ε lead to solutions that exist for a long time at least <math>\\n <semantics>\\n <msup>\\n <mi>ε</mi>\\n <mrow>\\n <mo>−</mo>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\varepsilon ^{-\\\\mathcal {M}}$</annotation>\\n </semantics></math> and disperse. This is a manifestation of the stabilizing effect of rotation, regardless of its speed. To achieve this we develop an anisotropic framework that naturally builds on the available symmetries. This allows for a precise quantification and control of the geometry of nonlinear interactions, while at the same time giving enough information to obtain dispersive decay via adapted linear dispersive estimates.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22107\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22107\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22107","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

众所周知,在各种流体模型中,恒定旋转会引起线性色散效应,本文研究了恒定旋转对无粘环境下长时间非线性动力学的影响。更准确地说,我们研究了在R3$\mathbb {R}^3$中具有固定旋转速度的三维旋转欧拉方程的稳定性。我们证明了对于任意M>0$\mathcal {M}> 0$,具有足够小尺寸ε的轴对称初始数据会导致至少ε - M$\varepsilon ^{-\mathcal {M}}$存在很长时间且分散的解。这是旋转稳定效果的表现,无论其速度如何。为了实现这一点,我们开发了一个各向异性框架,自然地建立在可用的对称性上。这允许对非线性相互作用的几何形状进行精确的量化和控制,同时通过自适应的线性色散估计提供足够的信息来获得色散衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stabilizing effect of rotation in the 3d Euler equations

While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Euler equations in R 3 $\mathbb {R}^3$ with a fixed speed of rotation. We show that for any M > 0 $\mathcal {M}> 0$ , axisymmetric initial data of sufficiently small size ε lead to solutions that exist for a long time at least ε M $\varepsilon ^{-\mathcal {M}}$ and disperse. This is a manifestation of the stabilizing effect of rotation, regardless of its speed. To achieve this we develop an anisotropic framework that naturally builds on the available symmetries. This allows for a precise quantification and control of the geometry of nonlinear interactions, while at the same time giving enough information to obtain dispersive decay via adapted linear dispersive estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信