关于PCF代数上Jech和Shelah定理的一个直接证明

Q4 Mathematics
J. C. Martínez
{"title":"关于PCF代数上Jech和Shelah定理的一个直接证明","authors":"J. C. Martínez","doi":"10.15446/RECOLMA.V52N2.77153","DOIUrl":null,"url":null,"abstract":"By using an argument based on the structure of the locally compact scattered spaces, we prove in a direct way the following result shown by Jech and Shelah: there is a family {Bα : α < ω1} of subsets of ω1 such that the following conditions are satisfied: (a) max Bα - α, (b) if α ∈ Bβ then Bα ⊆ Bβ, (c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal generated by the sets Bβ, β < α, and by the bounded subsets of δ, (d) there is a partition {An : n ∈ ω} of ω1 such that for every α and every n, Bα ∩An is finite.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":"23 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct proof of a theorem of Jech and Shelah on PCF algebras\",\"authors\":\"J. C. Martínez\",\"doi\":\"10.15446/RECOLMA.V52N2.77153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using an argument based on the structure of the locally compact scattered spaces, we prove in a direct way the following result shown by Jech and Shelah: there is a family {Bα : α < ω1} of subsets of ω1 such that the following conditions are satisfied: (a) max Bα - α, (b) if α ∈ Bβ then Bα ⊆ Bβ, (c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal generated by the sets Bβ, β < α, and by the bounded subsets of δ, (d) there is a partition {An : n ∈ ω} of ω1 such that for every α and every n, Bα ∩An is finite.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/RECOLMA.V52N2.77153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/RECOLMA.V52N2.77153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

通过使用基于局部紧散射空间结构的论点,我们直接证明了Jech和Shelah所示的以下结果:存在ω1的子集的族{Bα:α<ω1},使得满足以下条件:(a)最大Bα-α,(B)如果α∈Bβ,则Bα⊆Bβ,(c)如果δ≤α,并且δ是极限序数,则Bα≠δ不在由集合Bβ,β<α和δ的有界子集生成的理想中,(d)ω1有一个分区{An:n∈ω},使得对于每个α和每个n,Bα≈An是有限的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct proof of a theorem of Jech and Shelah on PCF algebras
By using an argument based on the structure of the locally compact scattered spaces, we prove in a direct way the following result shown by Jech and Shelah: there is a family {Bα : α < ω1} of subsets of ω1 such that the following conditions are satisfied: (a) max Bα - α, (b) if α ∈ Bβ then Bα ⊆ Bβ, (c) if δ ≤ α and δ is a limit ordinal then Bα ∩ δ is not in the ideal generated by the sets Bβ, β < α, and by the bounded subsets of δ, (d) there is a partition {An : n ∈ ω} of ω1 such that for every α and every n, Bα ∩An is finite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信