可解释机器学习

Q3 Computer Science
Queue Pub Date : 2021-12-31 DOI:10.1145/3511299
Valerie Chen, Jeffrey Li, Joon Sik Kim, Gregory Plumb, Ameet Talwalkar
{"title":"可解释机器学习","authors":"Valerie Chen, Jeffrey Li, Joon Sik Kim, Gregory Plumb, Ameet Talwalkar","doi":"10.1145/3511299","DOIUrl":null,"url":null,"abstract":"The emergence of machine learning as a society-changing technology in the past decade has triggered concerns about people's inability to understand the reasoning of increasingly complex models. The field of IML (interpretable machine learning) grew out of these concerns, with the goal of empowering various stakeholders to tackle use cases, such as building trust in models, performing model debugging, and generally informing real human decision-making.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"46 8","pages":"28 - 56"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Interpretable Machine Learning\",\"authors\":\"Valerie Chen, Jeffrey Li, Joon Sik Kim, Gregory Plumb, Ameet Talwalkar\",\"doi\":\"10.1145/3511299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of machine learning as a society-changing technology in the past decade has triggered concerns about people's inability to understand the reasoning of increasingly complex models. The field of IML (interpretable machine learning) grew out of these concerns, with the goal of empowering various stakeholders to tackle use cases, such as building trust in models, performing model debugging, and generally informing real human decision-making.\",\"PeriodicalId\":39042,\"journal\":{\"name\":\"Queue\",\"volume\":\"46 8\",\"pages\":\"28 - 56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Queue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 12

摘要

过去十年,机器学习作为一种改变社会的技术的出现,引发了人们对人们无法理解日益复杂的模型的推理的担忧。IML(可解释机器学习)领域从这些关注中发展而来,其目标是使各种涉众能够处理用例,例如在模型中建立信任,执行模型调试,以及通常为真实的人类决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Machine Learning
The emergence of machine learning as a society-changing technology in the past decade has triggered concerns about people's inability to understand the reasoning of increasingly complex models. The field of IML (interpretable machine learning) grew out of these concerns, with the goal of empowering various stakeholders to tackle use cases, such as building trust in models, performing model debugging, and generally informing real human decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Queue
Queue Computer Science-Computer Science (all)
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信