{"title":"网络知识社区进化中的秩序与无序:基于堆栈溢出证据的社会标签系统中的混沌行为研究","authors":"Yanqing Shi, Hongye Cao, Si Chen","doi":"10.1108/ajim-08-2022-0353","DOIUrl":null,"url":null,"abstract":"PurposeOnline question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.Design/methodology/approachThe authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.FindingsThere are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.Originality/valueThis study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.","PeriodicalId":53152,"journal":{"name":"Aslib Journal of Information Management","volume":"53 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Order and disorder in the evolution of online knowledge community: an investigation of the chaotic behavior in social tagging systems with evidence of stack overflow\",\"authors\":\"Yanqing Shi, Hongye Cao, Si Chen\",\"doi\":\"10.1108/ajim-08-2022-0353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeOnline question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.Design/methodology/approachThe authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.FindingsThere are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.Originality/valueThis study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.\",\"PeriodicalId\":53152,\"journal\":{\"name\":\"Aslib Journal of Information Management\",\"volume\":\"53 8\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aslib Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/ajim-08-2022-0353\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aslib Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/ajim-08-2022-0353","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Order and disorder in the evolution of online knowledge community: an investigation of the chaotic behavior in social tagging systems with evidence of stack overflow
PurposeOnline question-and-answer (Q&A) communities serve as important channels for knowledge diffusion. The purpose of this study is to investigate the dynamic development process of online knowledge systems and explore the final or progressive state of system development. By measuring the nonlinear characteristics of knowledge systems from the perspective of complexity science, the authors aim to enrich the perspective and method of the research on the dynamics of knowledge systems, and to deeply understand the behavior rules of knowledge systems.Design/methodology/approachThe authors collected data from the programming-related Q&A site Stack Overflow for a ten-year period (2008–2017) and included 48,373 tags in the analyses. The number of tags is taken as the time series, the correlation dimension and the maximum Lyapunov index are used to examine the chaos of the system and the Volterra series multistep forecast method is used to predict the system state.FindingsThere are strange attractors in the system, the whole system is complex but bounded and its evolution is bound to approach a relatively stable range. Empirical analyses indicate that chaos exists in the process of knowledge sharing in this social labeling system, and the period of change over time is about one week.Originality/valueThis study contributes to revealing the evolutionary cycle of knowledge stock in online knowledge systems and further indicates how this dynamic evolution can help in the setting of platform mechanics and resource inputs.
期刊介绍:
Aslib Journal of Information Management covers a broad range of issues in the field, including economic, behavioural, social, ethical, technological, international, business-related, political and management-orientated factors. Contributors are encouraged to spell out the practical implications of their work. Aslib Journal of Information Management Areas of interest include topics such as social media, data protection, search engines, information retrieval, digital libraries, information behaviour, intellectual property and copyright, information industry, digital repositories and information policy and governance.