Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev
{"title":"求解线性Fredholm-Volterra积分方程组的改进HAM","authors":"Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev","doi":"10.47836/mjms.16.1.08","DOIUrl":null,"url":null,"abstract":"This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in \"Solving a system of integral equations by an analytic method\".","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":"12 8","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified HAM for solving linear system of Fredholm-Volterra Integral Equations\",\"authors\":\"Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev\",\"doi\":\"10.47836/mjms.16.1.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in \\\"Solving a system of integral equations by an analytic method\\\".\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.1.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in "Solving a system of integral equations by an analytic method".
期刊介绍:
The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.