求解线性Fredholm-Volterra积分方程组的改进HAM

IF 0.5 Q3 MATHEMATICS
Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev
{"title":"求解线性Fredholm-Volterra积分方程组的改进HAM","authors":"Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev","doi":"10.47836/mjms.16.1.08","DOIUrl":null,"url":null,"abstract":"This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in \"Solving a system of integral equations by an analytic method\".","PeriodicalId":43645,"journal":{"name":"Malaysian Journal of Mathematical Sciences","volume":"12 8","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modified HAM for solving linear system of Fredholm-Volterra Integral Equations\",\"authors\":\"Z. Eshkuvatov, S. Ismail, Husnida Mamatova, D. S. Viscarra, R. Aloev\",\"doi\":\"10.47836/mjms.16.1.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in \\\"Solving a system of integral equations by an analytic method\\\".\",\"PeriodicalId\":43645,\"journal\":{\"name\":\"Malaysian Journal of Mathematical Sciences\",\"volume\":\"12 8\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/mjms.16.1.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/mjms.16.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文利用改进的同伦论分析方法(MHAM)和高斯-勒让德求积公式(GLQF)研究线性Fredholm-Volterra积分方程组,以寻求近似解。在相同迭代次数的情况下,比较了标准仿射分析方法(HAM)、MHAM和最优仿射渐近方法(OHAM)。从所选择的实例中注意到,具有GLQF的MHAM与标准HAM和OHAM相当。在所有情况下,具有GLQF的MHAM都接近精确解,其中当迭代次数和正交节点数增加时,残差迅速收敛到零。本文开发的HAM优于Shidfar和Molabahrami在“用解析方法求解积分方程组”中开发的HAM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified HAM for solving linear system of Fredholm-Volterra Integral Equations
This paper considers systems of linear Fredholm-Volterra integral equations using a modified homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly converges to zero when the number of iterations and quadrature nodes increases. The HAM developed in this paper is better than the HAM developed by Shidfar & Molabahrami in "Solving a system of integral equations by an analytic method".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
0
期刊介绍: The Research Bulletin of Institute for Mathematical Research (MathDigest) publishes light expository articles on mathematical sciences and research abstracts. It is published twice yearly by the Institute for Mathematical Research, Universiti Putra Malaysia. MathDigest is targeted at mathematically informed general readers on research of interest to the Institute. Articles are sought by invitation to the members, visitors and friends of the Institute. MathDigest also includes abstracts of thesis by postgraduate students of the Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信