Christopher L. Haga, Xue D. Yang, Ibrahim S. Gheit, Donald G. Phinney
{"title":"图形神经网络用于识别小RNA的新型抑制剂。","authors":"Christopher L. Haga, Xue D. Yang, Ibrahim S. Gheit, Donald G. Phinney","doi":"10.1016/j.slasd.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs (miRNAs) play a crucial role in post-transcriptional gene regulation and have been implicated in various diseases, including cancers and lung disease. In recent years, Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing graph-structured data, making them well-suited for the analysis of molecular structures. In this work, we explore the application of GNNs in ligand-based drug screening for small molecules targeting miR-21. By representing a known dataset of small molecules targeting miR-21 as graphs, GNNs can learn complex relationships between their structures and activities, enabling the prediction of potential miRNA-targeting small molecules by capturing the structural features and similarity between known miRNA-targeting compounds. The use of GNNs in miRNA-targeting drug screening holds promise for the discovery of novel therapeutic agents and provides a computational framework for efficient screening of large chemical libraries.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555223000710/pdfft?md5=cf43d9172dd2449988ff99574d605ae3&pid=1-s2.0-S2472555223000710-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graph neural networks for the identification of novel inhibitors of a small RNA\",\"authors\":\"Christopher L. Haga, Xue D. Yang, Ibrahim S. Gheit, Donald G. Phinney\",\"doi\":\"10.1016/j.slasd.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>MicroRNAs (miRNAs) play a crucial role in post-transcriptional gene regulation and have been implicated in various diseases, including cancers and lung disease. In recent years, Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing graph-structured data, making them well-suited for the analysis of molecular structures. In this work, we explore the application of GNNs in ligand-based drug screening for small molecules targeting miR-21. By representing a known dataset of small molecules targeting miR-21 as graphs, GNNs can learn complex relationships between their structures and activities, enabling the prediction of potential miRNA-targeting small molecules by capturing the structural features and similarity between known miRNA-targeting compounds. The use of GNNs in miRNA-targeting drug screening holds promise for the discovery of novel therapeutic agents and provides a computational framework for efficient screening of large chemical libraries.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000710/pdfft?md5=cf43d9172dd2449988ff99574d605ae3&pid=1-s2.0-S2472555223000710-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472555223000710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555223000710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Graph neural networks for the identification of novel inhibitors of a small RNA
MicroRNAs (miRNAs) play a crucial role in post-transcriptional gene regulation and have been implicated in various diseases, including cancers and lung disease. In recent years, Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing graph-structured data, making them well-suited for the analysis of molecular structures. In this work, we explore the application of GNNs in ligand-based drug screening for small molecules targeting miR-21. By representing a known dataset of small molecules targeting miR-21 as graphs, GNNs can learn complex relationships between their structures and activities, enabling the prediction of potential miRNA-targeting small molecules by capturing the structural features and similarity between known miRNA-targeting compounds. The use of GNNs in miRNA-targeting drug screening holds promise for the discovery of novel therapeutic agents and provides a computational framework for efficient screening of large chemical libraries.