{"title":"用滚环扩增技术探索miRNA的反式切割活性。","authors":"Chenqi Niu, Juewen Liu, Xinhui Xing, Chong Zhang","doi":"10.34133/bdr.0010","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085249/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA.\",\"authors\":\"Chenqi Niu, Juewen Liu, Xinhui Xing, Chong Zhang\",\"doi\":\"10.34133/bdr.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.</p>\",\"PeriodicalId\":56832,\"journal\":{\"name\":\"生物设计研究(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085249/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物设计研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/bdr.0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/bdr.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Exploring the Trans-Cleavage Activity with Rolling Circle Amplification for Fast Detection of miRNA.
MicroRNAs (miRNAs) are a class of endogenous short noncoding RNA. They regulate gene expression and function, essential to biological processes. It is necessary to develop an efficient detection method to determine these valuable biomarkers for the diagnosis of cancers. In this paper, we proposed a general and rapid method for sensitive and quantitative detection of miRNA by combining CRISPR-Cas12a and rolling circle amplification (RCA) with the precircularized probe. Eventually, the detection of miRNA-21 could be completed in 70 min with a limit of detection of 8.1 pM with high specificity. The reaction time was reduced by almost 4 h from more than 5 h to 70 min, which makes detection more efficient. This design improves the efficiency of CRISPR-Cas and RCA-based sensing strategy and shows great potential in lab-based detection and point-of-care test.