Man Li, Bin Long, Susie Y Dai, James W Golden, Xin Wang, Joshua S Yuan
{"title":"改变碳分配提高了蓝藻中CO2转化为萜烯的能力。","authors":"Man Li, Bin Long, Susie Y Dai, James W Golden, Xin Wang, Joshua S Yuan","doi":"10.34133/2022/9897425","DOIUrl":null,"url":null,"abstract":"<p><p>Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO<sub>2</sub> into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in <i>Synechococcus elongatus</i> PCC 7942. We then engineered key \"source\" and \"sink\" enzymes. The \"source\" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production <i>via</i> altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between \"source\" and \"sink\" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of \"source\" and \"sink\" synergy has significant potential in improving natural product yield in photosynthetic species.</p>","PeriodicalId":56832,"journal":{"name":"生物设计研究(英文)","volume":"2022 ","pages":"9897425"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521692/pdf/","citationCount":"4","resultStr":"{\"title\":\"Altered Carbon Partitioning Enhances CO<sub>2</sub> to Terpene Conversion in Cyanobacteria.\",\"authors\":\"Man Li, Bin Long, Susie Y Dai, James W Golden, Xin Wang, Joshua S Yuan\",\"doi\":\"10.34133/2022/9897425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO<sub>2</sub> into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in <i>Synechococcus elongatus</i> PCC 7942. We then engineered key \\\"source\\\" and \\\"sink\\\" enzymes. The \\\"source\\\" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production <i>via</i> altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between \\\"source\\\" and \\\"sink\\\" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of \\\"source\\\" and \\\"sink\\\" synergy has significant potential in improving natural product yield in photosynthetic species.</p>\",\"PeriodicalId\":56832,\"journal\":{\"name\":\"生物设计研究(英文)\",\"volume\":\"2022 \",\"pages\":\"9897425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521692/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物设计研究(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9897425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物设计研究(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.34133/2022/9897425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Altered Carbon Partitioning Enhances CO2 to Terpene Conversion in Cyanobacteria.
Photosynthetic terpene production represents one of the most carbon and energy-efficient routes for converting CO2 into hydrocarbon. In photosynthetic organisms, metabolic engineering has led to limited success in enhancing terpene productivity, partially due to the low carbon partitioning. In this study, we employed systems biology analysis to reveal the strong competition for carbon substrates between primary metabolism (e.g., sucrose, glycogen, and protein synthesis) and terpene biosynthesis in Synechococcus elongatus PCC 7942. We then engineered key "source" and "sink" enzymes. The "source" limitation was overcome by knocking out either sucrose or glycogen biosynthesis to significantly enhance limonene production via altered carbon partitioning. Moreover, a fusion enzyme complex with geranyl diphosphate synthase (GPPS) and limonene synthase (LS) was designed to further improve pathway kinetics and substrate channeling. The synergy between "source" and "sink" achieved a limonene titer of 21.0 mg/L. Overall, the study demonstrates that balancing carbon flux between primary and secondary metabolism can be an effective approach to enhance terpene bioproduction in cyanobacteria. The design of "source" and "sink" synergy has significant potential in improving natural product yield in photosynthetic species.