Victor Fadinger-Held, Sophie Frisch, Daniel Windisch
{"title":"具有指定因子分解长度的全局域的赋值环上的整值多项式。","authors":"Victor Fadinger-Held, Sophie Frisch, Daniel Windisch","doi":"10.1007/s00605-023-01895-2","DOIUrl":null,"url":null,"abstract":"<p><p>Let <i>V</i> be a valuation ring of a global field <i>K</i>. We show that for all positive integers <i>k</i> and <math><mrow><mn>1</mn><mo><</mo><msub><mi>n</mi><mn>1</mn></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math> there exists an integer-valued polynomial on <i>V</i>, that is, an element of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>]</mo><mo>∣</mo><mi>f</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>⊆</mo><mi>V</mi><mo>}</mo></mrow></math>, which has precisely <i>k</i> essentially different factorizations into irreducible elements of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></math> whose lengths are exactly <math><mrow><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math>. In fact, we show more, namely that the same result holds true for every discrete valuation domain <i>V</i> with finite residue field such that the quotient field of <i>V</i> admits a valuation ring independent of <i>V</i> whose maximal ideal is principal or whose residue field is finite. If the quotient field of <i>V</i> is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576700/pdf/","citationCount":"2","resultStr":"{\"title\":\"Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations.\",\"authors\":\"Victor Fadinger-Held, Sophie Frisch, Daniel Windisch\",\"doi\":\"10.1007/s00605-023-01895-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <i>V</i> be a valuation ring of a global field <i>K</i>. We show that for all positive integers <i>k</i> and <math><mrow><mn>1</mn><mo><</mo><msub><mi>n</mi><mn>1</mn></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math> there exists an integer-valued polynomial on <i>V</i>, that is, an element of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>f</mi><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>]</mo><mo>∣</mo><mi>f</mi><mo>(</mo><mi>V</mi><mo>)</mo><mo>⊆</mo><mi>V</mi><mo>}</mo></mrow></math>, which has precisely <i>k</i> essentially different factorizations into irreducible elements of <math><mrow><mrow><mspace></mspace><mtext>Int</mtext><mspace></mspace></mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow></math> whose lengths are exactly <math><mrow><msub><mi>n</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>n</mi><mi>k</mi></msub></mrow></math>. In fact, we show more, namely that the same result holds true for every discrete valuation domain <i>V</i> with finite residue field such that the quotient field of <i>V</i> admits a valuation ring independent of <i>V</i> whose maximal ideal is principal or whose residue field is finite. If the quotient field of <i>V</i> is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576700/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-023-01895-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-023-01895-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations.
Let V be a valuation ring of a global field K. We show that for all positive integers k and there exists an integer-valued polynomial on V, that is, an element of , which has precisely k essentially different factorizations into irreducible elements of whose lengths are exactly . In fact, we show more, namely that the same result holds true for every discrete valuation domain V with finite residue field such that the quotient field of V admits a valuation ring independent of V whose maximal ideal is principal or whose residue field is finite. If the quotient field of V is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.