{"title":"小脑自适应滤波模型用于具有尖峰训练输入的生物肌肉控制。","authors":"Emma Wilson","doi":"10.1162/neco_a_01617","DOIUrl":null,"url":null,"abstract":"Prior applications of the cerebellar adaptive filter model have included a range of tasks within simulated and robotic systems. However, this has been limited to systems driven by continuous signals. Here, the adaptive filter model of the cerebellum is applied to the control of a system driven by spiking inputs by considering the problem of controlling muscle force. The performance of the standard adaptive filter algorithm is compared with the algorithm with a modified learning rule that minimizes inputs and a simple proportional-integral-derivative (PID) controller. Control performance is evaluated in terms of the number of spikes, the accuracy of spike input locations, and the accuracy of muscle force output. Results show that the cerebellar adaptive filter model can be applied without change to the control of systems driven by spiking inputs. The cerebellar algorithm results in good agreement between input spikes and force outputs and significantly improves on a PID controller. Input minimization can be used to reduce the number of spike inputs, but at the expense of a decrease in accuracy of spike input location and force output. This work extends the applications of the cerebellar algorithm and demonstrates the potential of the adaptive filter model to be used to improve functional electrical stimulation muscle control.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"35 12","pages":"1938-1969"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Filter Model of Cerebellum for Biological Muscle Control With Spike Train Inputs\",\"authors\":\"Emma Wilson\",\"doi\":\"10.1162/neco_a_01617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prior applications of the cerebellar adaptive filter model have included a range of tasks within simulated and robotic systems. However, this has been limited to systems driven by continuous signals. Here, the adaptive filter model of the cerebellum is applied to the control of a system driven by spiking inputs by considering the problem of controlling muscle force. The performance of the standard adaptive filter algorithm is compared with the algorithm with a modified learning rule that minimizes inputs and a simple proportional-integral-derivative (PID) controller. Control performance is evaluated in terms of the number of spikes, the accuracy of spike input locations, and the accuracy of muscle force output. Results show that the cerebellar adaptive filter model can be applied without change to the control of systems driven by spiking inputs. The cerebellar algorithm results in good agreement between input spikes and force outputs and significantly improves on a PID controller. Input minimization can be used to reduce the number of spike inputs, but at the expense of a decrease in accuracy of spike input location and force output. This work extends the applications of the cerebellar algorithm and demonstrates the potential of the adaptive filter model to be used to improve functional electrical stimulation muscle control.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"35 12\",\"pages\":\"1938-1969\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10355115/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10355115/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Adaptive Filter Model of Cerebellum for Biological Muscle Control With Spike Train Inputs
Prior applications of the cerebellar adaptive filter model have included a range of tasks within simulated and robotic systems. However, this has been limited to systems driven by continuous signals. Here, the adaptive filter model of the cerebellum is applied to the control of a system driven by spiking inputs by considering the problem of controlling muscle force. The performance of the standard adaptive filter algorithm is compared with the algorithm with a modified learning rule that minimizes inputs and a simple proportional-integral-derivative (PID) controller. Control performance is evaluated in terms of the number of spikes, the accuracy of spike input locations, and the accuracy of muscle force output. Results show that the cerebellar adaptive filter model can be applied without change to the control of systems driven by spiking inputs. The cerebellar algorithm results in good agreement between input spikes and force outputs and significantly improves on a PID controller. Input minimization can be used to reduce the number of spike inputs, but at the expense of a decrease in accuracy of spike input location and force output. This work extends the applications of the cerebellar algorithm and demonstrates the potential of the adaptive filter model to be used to improve functional electrical stimulation muscle control.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.