{"title":"算法稳定性的黑盒测试","authors":"Byol Kim, Rina Foygel Barber","doi":"10.1093/imaiai/iaad039","DOIUrl":null,"url":null,"abstract":"<p><p>Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of <i>black-box testing</i> without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Black-box tests for algorithmic stability.\",\"authors\":\"Byol Kim, Rina Foygel Barber\",\"doi\":\"10.1093/imaiai/iaad039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of <i>black-box testing</i> without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of black-box testing without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.