算法稳定性的黑盒测试

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-10-14 eCollection Date: 2023-12-01 DOI:10.1093/imaiai/iaad039
Byol Kim, Rina Foygel Barber
{"title":"算法稳定性的黑盒测试","authors":"Byol Kim, Rina Foygel Barber","doi":"10.1093/imaiai/iaad039","DOIUrl":null,"url":null,"abstract":"<p><p>Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of <i>black-box testing</i> without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Black-box tests for algorithmic stability.\",\"authors\":\"Byol Kim, Rina Foygel Barber\",\"doi\":\"10.1093/imaiai/iaad039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of <i>black-box testing</i> without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad039\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

算法稳定性是学习理论中的一个概念,它表达了输入数据的变化(例如去除单个数据点)可能影响回归算法输出的程度。知道算法的稳定性特性通常对许多下游应用有用,例如,已知稳定性会导致期望的泛化特性和预测推理保证。然而,目前在实践中使用的许多现代算法过于复杂,无法对其稳定性特性进行理论分析,因此我们只能尝试通过对算法在各种数据集上的行为进行经验探索来建立这些特性。在这项工作中,我们为这种黑箱测试制定了一个正式的统计框架,而不对算法或数据分布进行任何假设,并对任何黑箱测试识别算法稳定性的能力建立了基本界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-box tests for algorithmic stability.

Algorithmic stability is a concept from learning theory that expresses the degree to which changes to the input data (e.g. removal of a single data point) may affect the outputs of a regression algorithm. Knowing an algorithm's stability properties is often useful for many downstream applications-for example, stability is known to lead to desirable generalization properties and predictive inference guarantees. However, many modern algorithms currently used in practice are too complex for a theoretical analysis of their stability properties, and thus we can only attempt to establish these properties through an empirical exploration of the algorithm's behaviour on various datasets. In this work, we lay out a formal statistical framework for this kind of black-box testing without any assumptions on the algorithm or the data distribution, and establish fundamental bounds on the ability of any black-box test to identify algorithmic stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信