DMPP通过激活胆碱能抗炎途径抑制糖盏降解,从而减轻脂多糖诱导的肺损伤。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-10-18 DOI:10.1007/s10863-023-09989-0
Feng Qi, Chengwei Duan, Tianpeng Chen, Feng Li, Jinsong Zhang
{"title":"DMPP通过激活胆碱能抗炎途径抑制糖盏降解,从而减轻脂多糖诱导的肺损伤。","authors":"Feng Qi, Chengwei Duan, Tianpeng Chen, Feng Li, Jinsong Zhang","doi":"10.1007/s10863-023-09989-0","DOIUrl":null,"url":null,"abstract":"<p><p>The study aimed to investigate the therapeutic potential of 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), an agonist of nicotinic acetylcholine receptor (nAChR), in treating acute lung injury (ALI) induced by lipopolysaccharide (LPS). A murine ALI model was developed utilizing intraperitoneal injection of LPS. We evaluated the therapeutic efficacy of DMPP treatment in LPS-induced lung injury using various approaches, including pathohistological evaluation, appraisal of pulmonary edema, and measurement of inflammatory cytokine levels and their associated pathways within lung tissues. The gene chip data of LPS-induced acute lung injury mice were retrieved from the Gene Expression Omnibus (GEO) database for gene differential expression analysis and Gene Set Enrichment Analysis (GSEA) analysis. The impact of DMPP on glycocalyx shedding was assessed by measuring the expression levels of syndecan-1 (SDC-1) and matrix metalloproteinase-9 (MMP-9). DMPP treatment significantly improved pathomorphological changes and pathological lung injury scores in the LPS-induced ALI mouse model. The genes expressed differentially in the LPS-induced ALI group in GSE2411 were found to be involved in multiple processes, including the NF-κB signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, as well as the JAK-STAT signaling pathway. DMPP treatment effectively downregulated pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and effectively restrained the LPS-induced upregulation of MMP-9 and shedding of syndecan-1, thereby contributing to the preservation of endothelial glycocalyx and attenuation of endothelial barrier dysfunction. The administration of DMPP has been shown to confer protection against LPS-induced acute lung injury via a cholinergic anti-inflammatory pathway, which effectively inhibits endothelial glycocalyx degradation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DMPP attenuates lipopolysaccharide-induced lung injury by inhibiting glycocalyx degradation through activation of the cholinergic anti-inflammatory pathway.\",\"authors\":\"Feng Qi, Chengwei Duan, Tianpeng Chen, Feng Li, Jinsong Zhang\",\"doi\":\"10.1007/s10863-023-09989-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study aimed to investigate the therapeutic potential of 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), an agonist of nicotinic acetylcholine receptor (nAChR), in treating acute lung injury (ALI) induced by lipopolysaccharide (LPS). A murine ALI model was developed utilizing intraperitoneal injection of LPS. We evaluated the therapeutic efficacy of DMPP treatment in LPS-induced lung injury using various approaches, including pathohistological evaluation, appraisal of pulmonary edema, and measurement of inflammatory cytokine levels and their associated pathways within lung tissues. The gene chip data of LPS-induced acute lung injury mice were retrieved from the Gene Expression Omnibus (GEO) database for gene differential expression analysis and Gene Set Enrichment Analysis (GSEA) analysis. The impact of DMPP on glycocalyx shedding was assessed by measuring the expression levels of syndecan-1 (SDC-1) and matrix metalloproteinase-9 (MMP-9). DMPP treatment significantly improved pathomorphological changes and pathological lung injury scores in the LPS-induced ALI mouse model. The genes expressed differentially in the LPS-induced ALI group in GSE2411 were found to be involved in multiple processes, including the NF-κB signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, as well as the JAK-STAT signaling pathway. DMPP treatment effectively downregulated pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and effectively restrained the LPS-induced upregulation of MMP-9 and shedding of syndecan-1, thereby contributing to the preservation of endothelial glycocalyx and attenuation of endothelial barrier dysfunction. The administration of DMPP has been shown to confer protection against LPS-induced acute lung injury via a cholinergic anti-inflammatory pathway, which effectively inhibits endothelial glycocalyx degradation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-023-09989-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09989-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨烟碱型乙酰胆碱受体(nAChR)激动剂1,1-二甲基-4-苯基哌嗪鎓碘化物(DMPP)对脂多糖(LPS)诱导的急性肺损伤(ALI)的治疗潜力。利用腹腔注射LPS建立小鼠ALI模型。我们使用各种方法评估了DMPP治疗LPS诱导的肺损伤的疗效,包括病理学评估、肺水肿的评估以及肺组织内炎症细胞因子水平及其相关途径的测量。从基因表达综合数据库(GEO)中检索LPS诱导的急性肺损伤小鼠的基因芯片数据,用于基因差异表达分析和基因集富集分析(GSEA)分析。通过测量syndecan-1(SDC-1)和基质金属蛋白酶-9(MMP-9)的表达水平来评估DMPP对糖盏脱落的影响。DMPP治疗显著改善了LPS诱导的ALI小鼠模型的病理形态学变化和病理性肺损伤评分。发现GSE2411中LPS诱导的ALI组中差异表达的基因参与多个过程,包括NF-κB信号通路、NOD样受体信号通路、Toll样受体信号途径以及JAK-STAT信号通路。DMPP治疗有效下调促炎细胞因子,抑制NF-κB信号通路,并有效抑制LPS诱导的MMP-9上调和syndecan-1的脱落,从而有助于保护内皮糖盏和减轻内皮屏障功能障碍。DMPP的给药已被证明通过胆碱能抗炎途径对LPS诱导的急性肺损伤提供保护,该途径有效抑制内皮糖盏降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DMPP attenuates lipopolysaccharide-induced lung injury by inhibiting glycocalyx degradation through activation of the cholinergic anti-inflammatory pathway.

DMPP attenuates lipopolysaccharide-induced lung injury by inhibiting glycocalyx degradation through activation of the cholinergic anti-inflammatory pathway.

The study aimed to investigate the therapeutic potential of 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), an agonist of nicotinic acetylcholine receptor (nAChR), in treating acute lung injury (ALI) induced by lipopolysaccharide (LPS). A murine ALI model was developed utilizing intraperitoneal injection of LPS. We evaluated the therapeutic efficacy of DMPP treatment in LPS-induced lung injury using various approaches, including pathohistological evaluation, appraisal of pulmonary edema, and measurement of inflammatory cytokine levels and their associated pathways within lung tissues. The gene chip data of LPS-induced acute lung injury mice were retrieved from the Gene Expression Omnibus (GEO) database for gene differential expression analysis and Gene Set Enrichment Analysis (GSEA) analysis. The impact of DMPP on glycocalyx shedding was assessed by measuring the expression levels of syndecan-1 (SDC-1) and matrix metalloproteinase-9 (MMP-9). DMPP treatment significantly improved pathomorphological changes and pathological lung injury scores in the LPS-induced ALI mouse model. The genes expressed differentially in the LPS-induced ALI group in GSE2411 were found to be involved in multiple processes, including the NF-κB signaling pathway, NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, as well as the JAK-STAT signaling pathway. DMPP treatment effectively downregulated pro-inflammatory cytokines, suppressed the NF-κB signaling pathway, and effectively restrained the LPS-induced upregulation of MMP-9 and shedding of syndecan-1, thereby contributing to the preservation of endothelial glycocalyx and attenuation of endothelial barrier dysfunction. The administration of DMPP has been shown to confer protection against LPS-induced acute lung injury via a cholinergic anti-inflammatory pathway, which effectively inhibits endothelial glycocalyx degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信