同位素稀释电感耦合等离子体质谱法测定人体血清中的镁、锌和铜。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2023-10-09 eCollection Date: 2023-01-01 DOI:10.1155/2023/6612672
Jian Yang, Lixia Chi, Shengmin Li
{"title":"同位素稀释电感耦合等离子体质谱法测定人体血清中的镁、锌和铜。","authors":"Jian Yang,&nbsp;Lixia Chi,&nbsp;Shengmin Li","doi":"10.1155/2023/6612672","DOIUrl":null,"url":null,"abstract":"<p><p>In order to evaluate the reliability of the ID ICP-MS method for the measurement of magnesium, zinc, and copper in human serum, we investigated the traceability, precision, trueness, and uncertainty of the method. This method traces the contents of magnesium, zinc, and copper in human serum to the standard materials NIST SRM3131a, SRM3168a, and SRM3114 respectively, thus completing the traceability to SI unit. The repeatability of this method for measuring magnesium, zinc, and copper in the human serum reference material GBW09152 was found to be 0.2%, 0.7%, and 0.6% (<i>n</i> = 9), respectively. The measurement, when employed to measure the magnesium, zinc, and copper in standard materials, had caused a maximum deviation of less than 0.88%, 1.35%, and 1.15%, respectively. The measurement results are within the stated uncertainty range of standard materials. The expanded uncertainties were 0.2 mg·kg<sup>-1</sup>, 0.04 mg·kg<sup>-1</sup>, and 0.08 mg·kg<sup>-1</sup> (<i>K</i> = 2) for magnesium, zinc, and copper, respectively. Therefore, this method has high trueness, good reproducibility, and simple operation and is suitable for tracing the values of magnesium, zinc, and copper in human serum.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578981/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measurement of Magnesium, Zinc, and Copper in Human Serum by Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID ICP-MS).\",\"authors\":\"Jian Yang,&nbsp;Lixia Chi,&nbsp;Shengmin Li\",\"doi\":\"10.1155/2023/6612672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to evaluate the reliability of the ID ICP-MS method for the measurement of magnesium, zinc, and copper in human serum, we investigated the traceability, precision, trueness, and uncertainty of the method. This method traces the contents of magnesium, zinc, and copper in human serum to the standard materials NIST SRM3131a, SRM3168a, and SRM3114 respectively, thus completing the traceability to SI unit. The repeatability of this method for measuring magnesium, zinc, and copper in the human serum reference material GBW09152 was found to be 0.2%, 0.7%, and 0.6% (<i>n</i> = 9), respectively. The measurement, when employed to measure the magnesium, zinc, and copper in standard materials, had caused a maximum deviation of less than 0.88%, 1.35%, and 1.15%, respectively. The measurement results are within the stated uncertainty range of standard materials. The expanded uncertainties were 0.2 mg·kg<sup>-1</sup>, 0.04 mg·kg<sup>-1</sup>, and 0.08 mg·kg<sup>-1</sup> (<i>K</i> = 2) for magnesium, zinc, and copper, respectively. Therefore, this method has high trueness, good reproducibility, and simple operation and is suitable for tracing the values of magnesium, zinc, and copper in human serum.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578981/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6612672\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/6612672","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了评估ID ICP-MS法测定人体血清中镁、锌和铜的可靠性,我们对该方法的可追溯性、精密度、真实性和不确定度进行了研究。该方法将人血清中镁、锌和铜的含量分别追溯到标准物质NIST SRM3131a、SRM3168a和SRM3114,从而完成了对SI单位的追溯。该方法测定人血清标准物质GBW09152中镁、锌和铜的重复性分别为0.2%、0.7%和0.6%(n = 9) 分别。当用于测量标准材料中的镁、锌和铜时,其最大偏差分别小于0.88%、1.35%和1.15%。测量结果在标准材料规定的不确定度范围内。扩大后的不确定性为0.2 mg·kg-10.04 mg·kg-1和0.08 mg·kg-1(K = 2) 分别用于镁、锌和铜。因此,该方法准确度高、重现性好、操作简便,适用于人血清中镁、锌、铜的测定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Measurement of Magnesium, Zinc, and Copper in Human Serum by Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID ICP-MS).

Measurement of Magnesium, Zinc, and Copper in Human Serum by Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry (ID ICP-MS).

In order to evaluate the reliability of the ID ICP-MS method for the measurement of magnesium, zinc, and copper in human serum, we investigated the traceability, precision, trueness, and uncertainty of the method. This method traces the contents of magnesium, zinc, and copper in human serum to the standard materials NIST SRM3131a, SRM3168a, and SRM3114 respectively, thus completing the traceability to SI unit. The repeatability of this method for measuring magnesium, zinc, and copper in the human serum reference material GBW09152 was found to be 0.2%, 0.7%, and 0.6% (n = 9), respectively. The measurement, when employed to measure the magnesium, zinc, and copper in standard materials, had caused a maximum deviation of less than 0.88%, 1.35%, and 1.15%, respectively. The measurement results are within the stated uncertainty range of standard materials. The expanded uncertainties were 0.2 mg·kg-1, 0.04 mg·kg-1, and 0.08 mg·kg-1 (K = 2) for magnesium, zinc, and copper, respectively. Therefore, this method has high trueness, good reproducibility, and simple operation and is suitable for tracing the values of magnesium, zinc, and copper in human serum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信