Cd33Se33/Ti2C MXene异质结构中的界面等离子体激元阻尼。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Junais Habeeb Mokkath
{"title":"Cd33Se33/Ti2C MXene异质结构中的界面等离子体激元阻尼。","authors":"Junais Habeeb Mokkath","doi":"10.1039/D3CP02644B","DOIUrl":null,"url":null,"abstract":"<p >MXenes, a class of two-dimensional materials, have shown immense potential in various applications such as energy storage, electromagnetic shielding, solar cells, smart fabrics, optoelectronics, and plasmonics. In this study, we employ first-principles density functional theory (DFT) and time-dependent DFT calculations to investigate a semiconductor–metal heterostructure composed of a Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small> cluster and Ti<small><sub>2</sub></small>C MXene monolayer flakes. Our research focuses on the formation and damping of localized surface plasmon resonances (LSPRs) within this heterostructure. We discover that the Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small>/Ti<small><sub>2</sub></small>C interface gives rise to a Schottky barrier. Importantly, this interface formation results in the damping of the Ti<small><sub>2</sub></small>C LSPR, thereby facilitating the transfer of electrons into the Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small> cluster. By directly visualizing the LSPR damping phenomenon, our study enhances our understanding of the semiconductor-MXene interface and provides novel insights for the design of MXene-based photocatalysts.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 42","pages":" 28761-28769"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface plasmon damping in the Cd33Se33/Ti2C MXene heterostructure\",\"authors\":\"Junais Habeeb Mokkath\",\"doi\":\"10.1039/D3CP02644B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >MXenes, a class of two-dimensional materials, have shown immense potential in various applications such as energy storage, electromagnetic shielding, solar cells, smart fabrics, optoelectronics, and plasmonics. In this study, we employ first-principles density functional theory (DFT) and time-dependent DFT calculations to investigate a semiconductor–metal heterostructure composed of a Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small> cluster and Ti<small><sub>2</sub></small>C MXene monolayer flakes. Our research focuses on the formation and damping of localized surface plasmon resonances (LSPRs) within this heterostructure. We discover that the Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small>/Ti<small><sub>2</sub></small>C interface gives rise to a Schottky barrier. Importantly, this interface formation results in the damping of the Ti<small><sub>2</sub></small>C LSPR, thereby facilitating the transfer of electrons into the Cd<small><sub>33</sub></small>Se<small><sub>33</sub></small> cluster. By directly visualizing the LSPR damping phenomenon, our study enhances our understanding of the semiconductor-MXene interface and provides novel insights for the design of MXene-based photocatalysts.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 42\",\"pages\":\" 28761-28769\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp02644b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp02644b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MXenes是一类二维材料,在储能、电磁屏蔽、太阳能电池、智能织物、光电子和等离子体激元等各种应用中显示出巨大的潜力。在本研究中,我们采用第一性原理密度泛函理论(DFT)和含时DFT计算来研究由Cd33Se33团簇和Ti2C-MXene单层薄片组成的半导体金属异质结构。我们的研究重点是这种异质结构中局域表面等离子体共振(LSPRs)的形成和阻尼。我们发现Cd33Se33/Ti2C界面产生了肖特基势垒。重要的是,这种界面的形成导致Ti2C LSPR的阻尼,从而促进电子转移到Cd33Se33团簇中。通过直接可视化LSPR阻尼现象,我们的研究增强了我们对半导体MXene界面的理解,并为MXene基光催化剂的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface plasmon damping in the Cd33Se33/Ti2C MXene heterostructure

Interface plasmon damping in the Cd33Se33/Ti2C MXene heterostructure

MXenes, a class of two-dimensional materials, have shown immense potential in various applications such as energy storage, electromagnetic shielding, solar cells, smart fabrics, optoelectronics, and plasmonics. In this study, we employ first-principles density functional theory (DFT) and time-dependent DFT calculations to investigate a semiconductor–metal heterostructure composed of a Cd33Se33 cluster and Ti2C MXene monolayer flakes. Our research focuses on the formation and damping of localized surface plasmon resonances (LSPRs) within this heterostructure. We discover that the Cd33Se33/Ti2C interface gives rise to a Schottky barrier. Importantly, this interface formation results in the damping of the Ti2C LSPR, thereby facilitating the transfer of electrons into the Cd33Se33 cluster. By directly visualizing the LSPR damping phenomenon, our study enhances our understanding of the semiconductor-MXene interface and provides novel insights for the design of MXene-based photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信