\(\mathbb{R}^d\)中线性水波型方程的色散估计

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Tilahun Deneke, Tamirat T. Dufera, Achenef Tesfahun
{"title":"\\(\\mathbb{R}^d\\)中线性水波型方程的色散估计","authors":"Tilahun Deneke,&nbsp;Tamirat T. Dufera,&nbsp;Achenef Tesfahun","doi":"10.1007/s00023-023-01322-0","DOIUrl":null,"url":null,"abstract":"<div><p>We derive a <span>\\(L^1_x (\\mathbb {R}^d)-L^{\\infty }_x (\\mathbb {R}^d)\\)</span> decay estimate of order <span>\\(\\mathcal O \\left( t^{-d/2}\\right) \\)</span> for the linear propagators </p><div><div><span>$$\\begin{aligned} \\exp \\left( {\\pm it \\sqrt{ |D|\\left( 1+ \\beta |D|^2\\right) \\tanh |D | } }\\right) , \\qquad \\beta \\in \\{0, 1\\}. \\quad D= -i\\nabla , \\end{aligned}$$</span></div></div><p>with a loss of 3<i>d</i>/4 or <i>d</i>/4–derivatives in the case <span>\\(\\beta =0\\)</span> or <span>\\(\\beta =1\\)</span>, respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter <span>\\(\\beta \\)</span> measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham–Boussinesq-type system in <span>\\(\\mathbb {R}^d\\)</span>, <span>\\(d\\ge 2\\)</span>. This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in <span>\\(\\mathbb {R}\\)</span> and <span>\\(\\mathbb {R}^2\\)</span>.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"24 11","pages":"3741 - 3761"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dispersive Estimates for Linearized Water Wave-Type Equations in \\\\(\\\\mathbb {R}^d\\\\)\",\"authors\":\"Tilahun Deneke,&nbsp;Tamirat T. Dufera,&nbsp;Achenef Tesfahun\",\"doi\":\"10.1007/s00023-023-01322-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We derive a <span>\\\\(L^1_x (\\\\mathbb {R}^d)-L^{\\\\infty }_x (\\\\mathbb {R}^d)\\\\)</span> decay estimate of order <span>\\\\(\\\\mathcal O \\\\left( t^{-d/2}\\\\right) \\\\)</span> for the linear propagators </p><div><div><span>$$\\\\begin{aligned} \\\\exp \\\\left( {\\\\pm it \\\\sqrt{ |D|\\\\left( 1+ \\\\beta |D|^2\\\\right) \\\\tanh |D | } }\\\\right) , \\\\qquad \\\\beta \\\\in \\\\{0, 1\\\\}. \\\\quad D= -i\\\\nabla , \\\\end{aligned}$$</span></div></div><p>with a loss of 3<i>d</i>/4 or <i>d</i>/4–derivatives in the case <span>\\\\(\\\\beta =0\\\\)</span> or <span>\\\\(\\\\beta =1\\\\)</span>, respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter <span>\\\\(\\\\beta \\\\)</span> measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham–Boussinesq-type system in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>, <span>\\\\(d\\\\ge 2\\\\)</span>. This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in <span>\\\\(\\\\mathbb {R}\\\\)</span> and <span>\\\\(\\\\mathbb {R}^2\\\\)</span>.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"24 11\",\"pages\":\"3741 - 3761\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01322-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01322-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们导出了线性传播算子$$\beart{aligned}\exp\left({\pm it\sqrt{|d|\left(1+\beta|d|^2\right)\tanh|d|}\right)的阶\(\mathcal O\left(t^{-d/2}\right)\)衰变估计。\quad D=-i\nabla,\end{aligned}$$,损失为3d/4或D/4–分别为\(β=0)或\(β=1)情况下的导数。已知这些线性传播子与线性水波方程有关,其中参数\(\β\)测量表面张力效应。作为一个应用,我们在\(\mathbb{R}^d\),\(d\ge2\)中证明了Whitham–Boussinesq型系统的低正则性适定性。这推广了Dinvay、Selberg和第三作者最近的一个结果,他们证明了\(\mathbb{R}\)和\(\math bb{R}^2 \)中的低正则性适定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersive Estimates for Linearized Water Wave-Type Equations in \(\mathbb {R}^d\)

We derive a \(L^1_x (\mathbb {R}^d)-L^{\infty }_x (\mathbb {R}^d)\) decay estimate of order \(\mathcal O \left( t^{-d/2}\right) \) for the linear propagators

$$\begin{aligned} \exp \left( {\pm it \sqrt{ |D|\left( 1+ \beta |D|^2\right) \tanh |D | } }\right) , \qquad \beta \in \{0, 1\}. \quad D= -i\nabla , \end{aligned}$$

with a loss of 3d/4 or d/4–derivatives in the case \(\beta =0\) or \(\beta =1\), respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter \(\beta \) measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham–Boussinesq-type system in \(\mathbb {R}^d\), \(d\ge 2\). This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in \(\mathbb {R}\) and \(\mathbb {R}^2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信