丙酸酮化对锐钛矿TiO2的晶面依赖性†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Jiao Huang, Liwen Li, Xiaoxia Wu, Yonghua Guo, Zijun Yang, Hua Wang, Qingfeng Ge and Xinli Zhu
{"title":"丙酸酮化对锐钛矿TiO2的晶面依赖性†","authors":"Jiao Huang, Liwen Li, Xiaoxia Wu, Yonghua Guo, Zijun Yang, Hua Wang, Qingfeng Ge and Xinli Zhu","doi":"10.1039/D3CY00917C","DOIUrl":null,"url":null,"abstract":"<p >Exploring reactions on well-defined surfaces may contribute to a better understanding of structure–activity relationships for metal oxide-mediated reactions. Herein, anatase TiO<small><sub>2</sub></small> with predominantly exposed (101), (100) and (001) facets were synthesized and tested for vapor-phase ketonization of propionic acid. The intrinsic ketonization rates based on both mass and surface area at 350 °C increase following the order of TiO<small><sub>2</sub></small>(100) &lt; TiO<small><sub>2</sub></small>(101) &lt; TiO<small><sub>2</sub></small>(001), with the corresponding turnover frequency based on the density of the acid–base pair being 51.8, 71.3, and 185.2 h<small><sup>−1</sup></small>, respectively. The ketonization rate cannot be correlated with either acid/base property or concentration of oxygen vacancies, but an integral band intensity ratio of monodentate/bidentate propionate, suggesting that the monodentate configuration is likely the more reactive intermediate toward C–C coupling. Density functional theory calculation of propionic acid adsorption indicates that the high activity of ketonization results from the longer shortest Ti<small><sub>5c</sub></small>–Ti<small><sub>5c</sub></small> distance, and the square arrangement of surface Ti<small><sub>5c</sub></small> centers in the nearly flat surface of the (001) facet. These results indicate that the surface geometrical structure of the metal oxide plays a crucial role in the ketonization of carboxylic acids, and the minority (001) facet on the surface may predominantly contribute to the overall activity in ketonization on anatase TiO<small><sub>2</sub></small>. Our results also suggest that facet engineering may greatly enhance the C–C coupling reactions mediated on the acid–base pair of the metal oxide.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 20","pages":" 5924-5937"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal facet dependence of the ketonization of propionic acid on anatase TiO2†\",\"authors\":\"Jiao Huang, Liwen Li, Xiaoxia Wu, Yonghua Guo, Zijun Yang, Hua Wang, Qingfeng Ge and Xinli Zhu\",\"doi\":\"10.1039/D3CY00917C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exploring reactions on well-defined surfaces may contribute to a better understanding of structure–activity relationships for metal oxide-mediated reactions. Herein, anatase TiO<small><sub>2</sub></small> with predominantly exposed (101), (100) and (001) facets were synthesized and tested for vapor-phase ketonization of propionic acid. The intrinsic ketonization rates based on both mass and surface area at 350 °C increase following the order of TiO<small><sub>2</sub></small>(100) &lt; TiO<small><sub>2</sub></small>(101) &lt; TiO<small><sub>2</sub></small>(001), with the corresponding turnover frequency based on the density of the acid–base pair being 51.8, 71.3, and 185.2 h<small><sup>−1</sup></small>, respectively. The ketonization rate cannot be correlated with either acid/base property or concentration of oxygen vacancies, but an integral band intensity ratio of monodentate/bidentate propionate, suggesting that the monodentate configuration is likely the more reactive intermediate toward C–C coupling. Density functional theory calculation of propionic acid adsorption indicates that the high activity of ketonization results from the longer shortest Ti<small><sub>5c</sub></small>–Ti<small><sub>5c</sub></small> distance, and the square arrangement of surface Ti<small><sub>5c</sub></small> centers in the nearly flat surface of the (001) facet. These results indicate that the surface geometrical structure of the metal oxide plays a crucial role in the ketonization of carboxylic acids, and the minority (001) facet on the surface may predominantly contribute to the overall activity in ketonization on anatase TiO<small><sub>2</sub></small>. Our results also suggest that facet engineering may greatly enhance the C–C coupling reactions mediated on the acid–base pair of the metal oxide.</p>\",\"PeriodicalId\":66,\"journal\":{\"name\":\"Catalysis Science & Technology\",\"volume\":\" 20\",\"pages\":\" 5924-5937\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Science & Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00917c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cy/d3cy00917c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索明确表面上的反应可能有助于更好地理解金属氧化物介导的反应的结构-活性关系。本文合成了具有主要暴露的(101)、(100)和(001)晶面的锐钛矿TiO2,并测试了丙酸的气相酮化。在350°C下,基于质量和表面积的固有酮化速率按照TiO2(100)<;TiO2(101)<;TiO2(001),基于酸碱对密度的相应周转频率分别为51.8、71.3和185.2 h−1。酮化速率与酸/碱性质或氧空位浓度无关,但与单齿/双齿丙酸酯的积分带强度比有关,这表明单齿构型可能是对C–C偶联更具反应性的中间体。丙酸吸附的密度泛函理论计算表明,较高的酮化活性源于较长的最短Ti5c–Ti5c距离,并且表面Ti5c中心的正方形排列在(001)面的几乎平坦的表面上。这些结果表明,金属氧化物的表面几何结构在羧酸的酮化中起着至关重要的作用,并且表面上的少数(001)面可能主要有助于锐钛矿TiO2酮化的整体活性。我们的结果还表明,刻面工程可以大大增强金属氧化物酸碱对介导的C–C偶联反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crystal facet dependence of the ketonization of propionic acid on anatase TiO2†

Crystal facet dependence of the ketonization of propionic acid on anatase TiO2†

Exploring reactions on well-defined surfaces may contribute to a better understanding of structure–activity relationships for metal oxide-mediated reactions. Herein, anatase TiO2 with predominantly exposed (101), (100) and (001) facets were synthesized and tested for vapor-phase ketonization of propionic acid. The intrinsic ketonization rates based on both mass and surface area at 350 °C increase following the order of TiO2(100) < TiO2(101) < TiO2(001), with the corresponding turnover frequency based on the density of the acid–base pair being 51.8, 71.3, and 185.2 h−1, respectively. The ketonization rate cannot be correlated with either acid/base property or concentration of oxygen vacancies, but an integral band intensity ratio of monodentate/bidentate propionate, suggesting that the monodentate configuration is likely the more reactive intermediate toward C–C coupling. Density functional theory calculation of propionic acid adsorption indicates that the high activity of ketonization results from the longer shortest Ti5c–Ti5c distance, and the square arrangement of surface Ti5c centers in the nearly flat surface of the (001) facet. These results indicate that the surface geometrical structure of the metal oxide plays a crucial role in the ketonization of carboxylic acids, and the minority (001) facet on the surface may predominantly contribute to the overall activity in ketonization on anatase TiO2. Our results also suggest that facet engineering may greatly enhance the C–C coupling reactions mediated on the acid–base pair of the metal oxide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信