使用图形模型建模多变量空间相关性。

Debangan Dey, Abhirup Datta, Sudipto Banerjee
{"title":"使用图形模型建模多变量空间相关性。","authors":"Debangan Dey,&nbsp;Abhirup Datta,&nbsp;Sudipto Banerjee","doi":"10.51387/23-nejsds47","DOIUrl":null,"url":null,"abstract":"<p><p>Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis of multivariate spatial data.</p>","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"1 2","pages":"283-295"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563032/pdf/nihms-1934371.pdf","citationCount":"1","resultStr":"{\"title\":\"Modeling Multivariate Spatial Dependencies Using Graphical Models.\",\"authors\":\"Debangan Dey,&nbsp;Abhirup Datta,&nbsp;Sudipto Banerjee\",\"doi\":\"10.51387/23-nejsds47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis of multivariate spatial data.</p>\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"1 2\",\"pages\":\"283-295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563032/pdf/nihms-1934371.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/23-nejsds47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图形模型在空间数据科学中得到了显著的发展和应用,用于对大量时空坐标上引用的数据进行建模。这些文献大多集中在单一或相对较少的空间依赖性结果上。最近的注意力集中在处理大量结果的建模和推理上。虽然空间因子模型和多元基展开在这一领域占据着重要地位,但本文阐述了最近的一种方法,图形高斯过程,该方法利用大量空间过程之间的条件独立性概念,构建可扩展的图形模型,用于对多变量空间数据进行完全基于模型的贝叶斯分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Multivariate Spatial Dependencies Using Graphical Models.

Graphical models have witnessed significant growth and usage in spatial data science for modeling data referenced over a massive number of spatial-temporal coordinates. Much of this literature has focused on a single or relatively few spatially dependent outcomes. Recent attention has focused upon addressing modeling and inference for substantially large number of outcomes. While spatial factor models and multivariate basis expansions occupy a prominent place in this domain, this article elucidates a recent approach, graphical Gaussian Processes, that exploits the notion of conditional independence among a very large number of spatial processes to build scalable graphical models for fully model-based Bayesian analysis of multivariate spatial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信