利用先进的人工智能分类和通知软件的计算机辅助肺纤维化检测。

IF 1.6 Q2 MEDICINE, GENERAL & INTERNAL
Journal of clinical medicine research Pub Date : 2023-09-01 Epub Date: 2023-09-30 DOI:10.14740/jocmr5020
Kavitha C Selvan, Angad Kalra, Joshua Reicher, Michael Muelly, Ayodeji Adegunsoye
{"title":"利用先进的人工智能分类和通知软件的计算机辅助肺纤维化检测。","authors":"Kavitha C Selvan, Angad Kalra, Joshua Reicher, Michael Muelly, Ayodeji Adegunsoye","doi":"10.14740/jocmr5020","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Improvement in recognition and referral of pulmonary fibrosis (PF) is vital to improving patient outcomes within interstitial lung disease. We determined the performance metrics and processing time of an artificial intelligence triage and notification software, ScreenDx-LungFibrosis™, developed to improve detection of PF.</p><p><strong>Methods: </strong>ScreenDx-LungFibrosis™ was applied to chest computed tomography (CT) scans from multisource data. Device output (+/- PF) was compared to clinical diagnosis (+/- PF), and diagnostic performance was evaluated. Primary endpoints included device sensitivity and specificity > 80% and processing time < 4.5 min.</p><p><strong>Results: </strong>Of 3,018 patients included, PF was present in 22.9%. ScreenDx-LungFibrosis™ detected PF with a sensitivity and specificity of 91.3% (95% confidence interval (CI): 89.0-93.3%) and 95.1% (95% CI: 94.2-96.0%), respectively. Mean processing time was 27.6 s (95% CI: 26.0 - 29.1 s).</p><p><strong>Conclusions: </strong>ScreenDx-LungFibrosis™ accurately and reliably identified PF with a rapid per-case processing time, underscoring its potential for transformative improvement in PF outcomes when routinely applied to chest CTs.</p>","PeriodicalId":94329,"journal":{"name":"Journal of clinical medicine research","volume":"15 8-9","pages":"423-429"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/92/jocmr-15-423.PMC10563821.pdf","citationCount":"0","resultStr":"{\"title\":\"Computer-Aided Pulmonary Fibrosis Detection Leveraging an Advanced Artificial Intelligence Triage and Notification Software.\",\"authors\":\"Kavitha C Selvan, Angad Kalra, Joshua Reicher, Michael Muelly, Ayodeji Adegunsoye\",\"doi\":\"10.14740/jocmr5020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Improvement in recognition and referral of pulmonary fibrosis (PF) is vital to improving patient outcomes within interstitial lung disease. We determined the performance metrics and processing time of an artificial intelligence triage and notification software, ScreenDx-LungFibrosis™, developed to improve detection of PF.</p><p><strong>Methods: </strong>ScreenDx-LungFibrosis™ was applied to chest computed tomography (CT) scans from multisource data. Device output (+/- PF) was compared to clinical diagnosis (+/- PF), and diagnostic performance was evaluated. Primary endpoints included device sensitivity and specificity > 80% and processing time < 4.5 min.</p><p><strong>Results: </strong>Of 3,018 patients included, PF was present in 22.9%. ScreenDx-LungFibrosis™ detected PF with a sensitivity and specificity of 91.3% (95% confidence interval (CI): 89.0-93.3%) and 95.1% (95% CI: 94.2-96.0%), respectively. Mean processing time was 27.6 s (95% CI: 26.0 - 29.1 s).</p><p><strong>Conclusions: </strong>ScreenDx-LungFibrosis™ accurately and reliably identified PF with a rapid per-case processing time, underscoring its potential for transformative improvement in PF outcomes when routinely applied to chest CTs.</p>\",\"PeriodicalId\":94329,\"journal\":{\"name\":\"Journal of clinical medicine research\",\"volume\":\"15 8-9\",\"pages\":\"423-429\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/92/jocmr-15-423.PMC10563821.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of clinical medicine research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14740/jocmr5020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical medicine research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14740/jocmr5020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:提高对肺纤维化(PF)的认识和转诊对改善间质性肺病患者的预后至关重要。我们确定了人工智能分诊和通知软件ScreenDx LungFibrosis的性能指标和处理时间™, 方法:ScreenDx LungFibrosis™ 应用于多源数据的胸部计算机断层扫描(CT)扫描。将设备输出(+/-PF)与临床诊断(+/-PF)进行比较,并评估诊断性能。主要终点包括装置灵敏度和特异性>80%,处理时间<4.5分钟。结果:在3018名患者中,PF占22.9%。ScreenDx肺纤维化™ 检测PF的敏感性和特异性分别为91.3%(95%置信区间:89.0-93.3%)和95.1%(95%置信度:94.2-96.0%)。平均处理时间为27.6秒(95%可信区间:26.0-29.1秒)。结论:ScreenDx肺纤维化™ 准确可靠地识别PF,每个病例的处理时间很快,强调了其在常规应用于胸部CT时对PF结果进行变革性改善的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computer-Aided Pulmonary Fibrosis Detection Leveraging an Advanced Artificial Intelligence Triage and Notification Software.

Computer-Aided Pulmonary Fibrosis Detection Leveraging an Advanced Artificial Intelligence Triage and Notification Software.

Background: Improvement in recognition and referral of pulmonary fibrosis (PF) is vital to improving patient outcomes within interstitial lung disease. We determined the performance metrics and processing time of an artificial intelligence triage and notification software, ScreenDx-LungFibrosis™, developed to improve detection of PF.

Methods: ScreenDx-LungFibrosis™ was applied to chest computed tomography (CT) scans from multisource data. Device output (+/- PF) was compared to clinical diagnosis (+/- PF), and diagnostic performance was evaluated. Primary endpoints included device sensitivity and specificity > 80% and processing time < 4.5 min.

Results: Of 3,018 patients included, PF was present in 22.9%. ScreenDx-LungFibrosis™ detected PF with a sensitivity and specificity of 91.3% (95% confidence interval (CI): 89.0-93.3%) and 95.1% (95% CI: 94.2-96.0%), respectively. Mean processing time was 27.6 s (95% CI: 26.0 - 29.1 s).

Conclusions: ScreenDx-LungFibrosis™ accurately and reliably identified PF with a rapid per-case processing time, underscoring its potential for transformative improvement in PF outcomes when routinely applied to chest CTs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信