{"title":"他汀类药物:作用机制和效果。","authors":"C Stancu, A Sima","doi":"10.1111/j.1582-4934.2001.tb00172.x","DOIUrl":null,"url":null,"abstract":"<p><p>The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.</p>","PeriodicalId":94327,"journal":{"name":"Journal of cellular and molecular medicine","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/j.1582-4934.2001.tb00172.x","citationCount":"740","resultStr":"{\"title\":\"Statins: mechanism of action and effects.\",\"authors\":\"C Stancu, A Sima\",\"doi\":\"10.1111/j.1582-4934.2001.tb00172.x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.</p>\",\"PeriodicalId\":94327,\"journal\":{\"name\":\"Journal of cellular and molecular medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/j.1582-4934.2001.tb00172.x\",\"citationCount\":\"740\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cellular and molecular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/j.1582-4934.2001.tb00172.x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular and molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1582-4934.2001.tb00172.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The beneficial effects of statins are the result of their capacity to reduce cholesterol biosyntesis, mainly in the liver, where they are selectively distributed, as well as to the modulation of lipid metabolism, derived from their effect of inhibition upon HMG-CoA reductase. Statins have antiatherosclerotic effects, that positively correlate with the percent decrease in LDL cholesterol. In addition, they can exert antiatherosclerotic effects independently of their hypolipidemic action. Because the mevalonate metabolism generates a series of isoprenoids vital for different cellular functions, from cholesterol synthesis to the control of cell growth and differentiation, HMG-CoA reductase inhibition has beneficial pleiotropic effects. Consequently, statins reduce significantly the incidence of coronary events, both in primary and secondary prevention, being the most efficient hypolipidemic compounds that have reduced the rate of mortality in coronary patients. Independent of their hypolipidemic properties, statins interfere with events involved in bone formation and impede tumor cell growth.