Swayam Prakash Das Sidhanta, Ramanathan Sowdhamini, Narayanaswamy Srinivasan
{"title":"多结构域蛋白质中永久和瞬时结构域相互作用的比较分析。","authors":"Swayam Prakash Das Sidhanta, Ramanathan Sowdhamini, Narayanaswamy Srinivasan","doi":"10.1002/prot.26581","DOIUrl":null,"url":null,"abstract":"<p><p>Protein domains are structural, functional, and evolutionary units. These domains bring out the diversity of functionality by means of interactions with other co-existing domains and provide stability. Hence, it is important to study intra-protein inter-domain interactions from the perspective of types of interactions. Domains within a chain could interact over short timeframes or permanently, rather like protein-protein interactions (PPIs). However, no systematic study has been carried out between two classes, namely permanent and transient domain-domain interactions. In this work, we studied 263 two-domain proteins, belonging to either of these classes and their interfaces on the basis of several factors, such as interface area and details of interactions (number, strength, and types of interactions). We also characterized them based on residue conservation at the interface, correlation of residue motions across domains, its involvement in repeat formation, and their involvement in particular molecular processes. Finally, we could analyze the interactions arising from domains in two-domain monomeric proteins, and we observed significant differences between these two classes of domain interactions and a few similarities. This study will help to obtain a better understanding of structure-function and folding principles of multi-domain proteins.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"197-208"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of permanent and transient domain-domain interactions in multi-domain proteins.\",\"authors\":\"Swayam Prakash Das Sidhanta, Ramanathan Sowdhamini, Narayanaswamy Srinivasan\",\"doi\":\"10.1002/prot.26581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein domains are structural, functional, and evolutionary units. These domains bring out the diversity of functionality by means of interactions with other co-existing domains and provide stability. Hence, it is important to study intra-protein inter-domain interactions from the perspective of types of interactions. Domains within a chain could interact over short timeframes or permanently, rather like protein-protein interactions (PPIs). However, no systematic study has been carried out between two classes, namely permanent and transient domain-domain interactions. In this work, we studied 263 two-domain proteins, belonging to either of these classes and their interfaces on the basis of several factors, such as interface area and details of interactions (number, strength, and types of interactions). We also characterized them based on residue conservation at the interface, correlation of residue motions across domains, its involvement in repeat formation, and their involvement in particular molecular processes. Finally, we could analyze the interactions arising from domains in two-domain monomeric proteins, and we observed significant differences between these two classes of domain interactions and a few similarities. This study will help to obtain a better understanding of structure-function and folding principles of multi-domain proteins.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"197-208\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26581\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26581","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comparative analysis of permanent and transient domain-domain interactions in multi-domain proteins.
Protein domains are structural, functional, and evolutionary units. These domains bring out the diversity of functionality by means of interactions with other co-existing domains and provide stability. Hence, it is important to study intra-protein inter-domain interactions from the perspective of types of interactions. Domains within a chain could interact over short timeframes or permanently, rather like protein-protein interactions (PPIs). However, no systematic study has been carried out between two classes, namely permanent and transient domain-domain interactions. In this work, we studied 263 two-domain proteins, belonging to either of these classes and their interfaces on the basis of several factors, such as interface area and details of interactions (number, strength, and types of interactions). We also characterized them based on residue conservation at the interface, correlation of residue motions across domains, its involvement in repeat formation, and their involvement in particular molecular processes. Finally, we could analyze the interactions arising from domains in two-domain monomeric proteins, and we observed significant differences between these two classes of domain interactions and a few similarities. This study will help to obtain a better understanding of structure-function and folding principles of multi-domain proteins.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.