涉及外部对照数据的早期随机临床试验中治疗效果的评估。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Heiko Götte, Marietta Kirchner, Johannes Krisam, Arthur Allignol, Armin Schüler, Meinhard Kieser
{"title":"涉及外部对照数据的早期随机临床试验中治疗效果的评估。","authors":"Heiko Götte, Marietta Kirchner, Johannes Krisam, Arthur Allignol, Armin Schüler, Meinhard Kieser","doi":"10.1080/10543406.2023.2256835","DOIUrl":null,"url":null,"abstract":"<p><p>There are good reasons to perform a randomized controlled trial (RCT) even in early phases of clinical development. However, the low sample sizes in those settings lead to high variability of the treatment effect estimate. The variability could be reduced by adding external control data if available. For the common setting of suitable subject-level control group data only available from one external (clinical trial or real-world) data source, we evaluate different analysis options for estimating the treatment effect via hazard ratios. The impact of the external control data is usually guided by the level of similarity with the current RCT data. Such level of similarity can be determined via outcome and/or baseline covariate data comparisons. We provide an overview over existing methods, propose a novel option for a combined assessment of outcome and baseline data, and compare a selected set of approaches in a simulation study under varying assumptions regarding observable and unobservable confounder distributions using a time-to-event model. Our various simulation scenarios also reflect the differences between external clinical trial and real-world data. Data combinations via simple outcome-based borrowing or simple propensity score weighting with baseline covariate data are not recommended. Analysis options which conflate outcome and baseline covariate data perform best in our simulation study.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"680-699"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of treatment effects in early-phase randomized clinical trials involving external control data.\",\"authors\":\"Heiko Götte, Marietta Kirchner, Johannes Krisam, Arthur Allignol, Armin Schüler, Meinhard Kieser\",\"doi\":\"10.1080/10543406.2023.2256835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There are good reasons to perform a randomized controlled trial (RCT) even in early phases of clinical development. However, the low sample sizes in those settings lead to high variability of the treatment effect estimate. The variability could be reduced by adding external control data if available. For the common setting of suitable subject-level control group data only available from one external (clinical trial or real-world) data source, we evaluate different analysis options for estimating the treatment effect via hazard ratios. The impact of the external control data is usually guided by the level of similarity with the current RCT data. Such level of similarity can be determined via outcome and/or baseline covariate data comparisons. We provide an overview over existing methods, propose a novel option for a combined assessment of outcome and baseline data, and compare a selected set of approaches in a simulation study under varying assumptions regarding observable and unobservable confounder distributions using a time-to-event model. Our various simulation scenarios also reflect the differences between external clinical trial and real-world data. Data combinations via simple outcome-based borrowing or simple propensity score weighting with baseline covariate data are not recommended. Analysis options which conflate outcome and baseline covariate data perform best in our simulation study.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"680-699\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2023.2256835\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2256835","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

即使在临床发展的早期阶段,也有充分的理由进行随机对照试验。然而,这些环境中的低样本量导致治疗效果估计的高度可变性。如果可用,可以通过添加外部控制数据来减少可变性。对于仅可从一个外部(临床试验或真实世界)数据源获得的合适受试者水平对照组数据的常见设置,我们评估了通过风险比估计治疗效果的不同分析选项。外部控制数据的影响通常由与当前RCT数据的相似程度来指导。这种相似性水平可以通过结果和/或基线协变量数据比较来确定。我们对现有方法进行了概述,提出了一种对结果和基线数据进行联合评估的新选择,并在模拟研究中使用时间-事件模型,在关于可观察和不可观察混杂因素分布的不同假设下,比较了一组选定的方法。我们的各种模拟场景也反映了外部临床试验和真实世界数据之间的差异。不建议通过简单的基于结果的借用或简单的倾向得分加权与基线协变量数据进行数据组合。将结果和基线协变量数据合并的分析选项在我们的模拟研究中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of treatment effects in early-phase randomized clinical trials involving external control data.

There are good reasons to perform a randomized controlled trial (RCT) even in early phases of clinical development. However, the low sample sizes in those settings lead to high variability of the treatment effect estimate. The variability could be reduced by adding external control data if available. For the common setting of suitable subject-level control group data only available from one external (clinical trial or real-world) data source, we evaluate different analysis options for estimating the treatment effect via hazard ratios. The impact of the external control data is usually guided by the level of similarity with the current RCT data. Such level of similarity can be determined via outcome and/or baseline covariate data comparisons. We provide an overview over existing methods, propose a novel option for a combined assessment of outcome and baseline data, and compare a selected set of approaches in a simulation study under varying assumptions regarding observable and unobservable confounder distributions using a time-to-event model. Our various simulation scenarios also reflect the differences between external clinical trial and real-world data. Data combinations via simple outcome-based borrowing or simple propensity score weighting with baseline covariate data are not recommended. Analysis options which conflate outcome and baseline covariate data perform best in our simulation study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信