通过加权基因共表达网络分析,将toll样受体5和酰基-CoA合成酶长链家族成员1鉴定为中枢基因与严重形式的新冠肺炎相关。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luoyi Wang, Zhaomin Mao, Fengmin Shao
{"title":"通过加权基因共表达网络分析,将toll样受体5和酰基-CoA合成酶长链家族成员1鉴定为中枢基因与严重形式的新冠肺炎相关。","authors":"Luoyi Wang,&nbsp;Zhaomin Mao,&nbsp;Fengmin Shao","doi":"10.1049/syb2.12079","DOIUrl":null,"url":null,"abstract":"<p>Since a 25% mortality rate occurred in critical Coronavirus disease 2019 (COVID-19) patients, investigating the potential drivers remains to be important. Here, the authors applied Weighted Gene Co-expression Network Analysis to identify the potential drivers in the blood samples of multiple COVID-19 expression profiles. The authors found that the darkslateblue module was significantly correlated with critical COVID-19, and Gene Ontology analysis indicated terms associated with the inflammation pathway and apoptotic process. The authors intersected differentially expressed genes, Maximal Clique Centrality calculated hub genes, and COVID-19 related genes in the Genecards dataset, and two genes, toll-like receptor 5 (TLR5) and acyl-CoA synthetase long chain family member 1 (ACSL1), were screened out. The Gene Set Enrichment Analysis further supports their core role in the inflammatory pathway. Furthermore, the cell-type identification by estimating relative subsets of RNA transcript demonstrated that TLR5 and ACSL1 were associated with neutrophil enrichment in critical COVID-19 patients. Collectively, the aurthors identified two hub genes that were strongly correlated with critical COVID-19. These may help clarify the pathogenesis and assist the immunotherapy development.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12079","citationCount":"0","resultStr":"{\"title\":\"Identification of toll-like receptor 5 and acyl-CoA synthetase long chain family member 1 as hub genes are correlated with the severe forms of COVID-19 by Weighted gene co-expression network analysis\",\"authors\":\"Luoyi Wang,&nbsp;Zhaomin Mao,&nbsp;Fengmin Shao\",\"doi\":\"10.1049/syb2.12079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since a 25% mortality rate occurred in critical Coronavirus disease 2019 (COVID-19) patients, investigating the potential drivers remains to be important. Here, the authors applied Weighted Gene Co-expression Network Analysis to identify the potential drivers in the blood samples of multiple COVID-19 expression profiles. The authors found that the darkslateblue module was significantly correlated with critical COVID-19, and Gene Ontology analysis indicated terms associated with the inflammation pathway and apoptotic process. The authors intersected differentially expressed genes, Maximal Clique Centrality calculated hub genes, and COVID-19 related genes in the Genecards dataset, and two genes, toll-like receptor 5 (TLR5) and acyl-CoA synthetase long chain family member 1 (ACSL1), were screened out. The Gene Set Enrichment Analysis further supports their core role in the inflammatory pathway. Furthermore, the cell-type identification by estimating relative subsets of RNA transcript demonstrated that TLR5 and ACSL1 were associated with neutrophil enrichment in critical COVID-19 patients. Collectively, the aurthors identified two hub genes that were strongly correlated with critical COVID-19. These may help clarify the pathogenesis and assist the immunotherapy development.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12079\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12079","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于2019年重症冠状病毒病(新冠肺炎)患者的死亡率为25%,因此调查潜在的驱动因素仍然很重要。在这里,作者应用加权基因共表达网络分析来识别多个新冠肺炎表达谱的血液样本中的潜在驱动因素。作者发现,暗条带模块与关键的新冠肺炎显著相关,基因本体论分析表明,术语与炎症途径和凋亡过程相关。作者在Genecards数据集中交叉了差异表达基因、Maximal Clique Centrality计算的枢纽基因和新冠肺炎相关基因,并筛选出两个基因,即toll样受体5(TLR5)和酰基-CoA合成酶长链家族成员1(ACSL1)。基因集富集分析进一步支持它们在炎症途径中的核心作用。此外,通过估计RNA转录物的相对亚群进行的细胞类型鉴定表明,在新冠肺炎危重患者中,TLR5和ACSL1与中性粒细胞富集有关。总之,金确定了两个与关键的新冠肺炎密切相关的中枢基因。这些可能有助于阐明发病机制并有助于免疫疗法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification of toll-like receptor 5 and acyl-CoA synthetase long chain family member 1 as hub genes are correlated with the severe forms of COVID-19 by Weighted gene co-expression network analysis

Identification of toll-like receptor 5 and acyl-CoA synthetase long chain family member 1 as hub genes are correlated with the severe forms of COVID-19 by Weighted gene co-expression network analysis

Since a 25% mortality rate occurred in critical Coronavirus disease 2019 (COVID-19) patients, investigating the potential drivers remains to be important. Here, the authors applied Weighted Gene Co-expression Network Analysis to identify the potential drivers in the blood samples of multiple COVID-19 expression profiles. The authors found that the darkslateblue module was significantly correlated with critical COVID-19, and Gene Ontology analysis indicated terms associated with the inflammation pathway and apoptotic process. The authors intersected differentially expressed genes, Maximal Clique Centrality calculated hub genes, and COVID-19 related genes in the Genecards dataset, and two genes, toll-like receptor 5 (TLR5) and acyl-CoA synthetase long chain family member 1 (ACSL1), were screened out. The Gene Set Enrichment Analysis further supports their core role in the inflammatory pathway. Furthermore, the cell-type identification by estimating relative subsets of RNA transcript demonstrated that TLR5 and ACSL1 were associated with neutrophil enrichment in critical COVID-19 patients. Collectively, the aurthors identified two hub genes that were strongly correlated with critical COVID-19. These may help clarify the pathogenesis and assist the immunotherapy development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信