Selma Engin, Jesús González-Vázquez, Gianluigi Grimaldi Maliyar, Aleksandar R Milosavljević, Taishi Ono, Saikat Nandi, Denys Iablonskyi, Kuno Kooser, John D Bozek, Piero Decleva, Edwin Kukk, Kiyoshi Ueda, Fernando Martín
{"title":"H2O振动分辨价壳层光电离的全维理论描述。","authors":"Selma Engin, Jesús González-Vázquez, Gianluigi Grimaldi Maliyar, Aleksandar R Milosavljević, Taishi Ono, Saikat Nandi, Denys Iablonskyi, Kuno Kooser, John D Bozek, Piero Decleva, Edwin Kukk, Kiyoshi Ueda, Fernando Martín","doi":"10.1063/1.5106431","DOIUrl":null,"url":null,"abstract":"<p><p>We have performed a full-dimensional theoretical study of vibrationally resolved photoelectron emission from the valence shell of the water molecule by using an extension of the static-exchange density functional theory that accounts for ionization as well as for vibrational motion in the symmetric stretching, antisymmetric stretching, and bending modes. At variance with previous studies performed in centrosymmetric molecules, where vibrationally resolved spectra are mostly dominated by the symmetric stretching mode, in the present case, all three modes contribute to the calculated spectra, including intermode couplings. We have found that diffraction of the ejected electron by the various atomic centers is barely visible in the ratios between vibrationally resolved photoelectron spectra corresponding to different vibrational states of the remaining H<sub>2</sub>O<sup>+</sup> cation (the so-called <i>v</i>-ratios), in contrast to the prominent oscillations observed in K-shell ionization of centrosymmetric molecules, including those that only contain hydrogen atoms around the central atoms, e.g., CH<sub>4</sub>. To validate the conclusions of our work, we have carried out synchrotron radiation experiments at the SOLEIL synchrotron and determined photoelectron spectra and <i>v</i>-ratios for H<sub>2</sub>O in a wide range of photon energies, from threshold up to 150 eV. The agreement with the theoretical predictions is good.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"6 5","pages":"054101"},"PeriodicalIF":2.3000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5106431","citationCount":"4","resultStr":"{\"title\":\"Full-dimensional theoretical description of vibrationally resolved valence-shell photoionization of H<sub>2</sub>O.\",\"authors\":\"Selma Engin, Jesús González-Vázquez, Gianluigi Grimaldi Maliyar, Aleksandar R Milosavljević, Taishi Ono, Saikat Nandi, Denys Iablonskyi, Kuno Kooser, John D Bozek, Piero Decleva, Edwin Kukk, Kiyoshi Ueda, Fernando Martín\",\"doi\":\"10.1063/1.5106431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have performed a full-dimensional theoretical study of vibrationally resolved photoelectron emission from the valence shell of the water molecule by using an extension of the static-exchange density functional theory that accounts for ionization as well as for vibrational motion in the symmetric stretching, antisymmetric stretching, and bending modes. At variance with previous studies performed in centrosymmetric molecules, where vibrationally resolved spectra are mostly dominated by the symmetric stretching mode, in the present case, all three modes contribute to the calculated spectra, including intermode couplings. We have found that diffraction of the ejected electron by the various atomic centers is barely visible in the ratios between vibrationally resolved photoelectron spectra corresponding to different vibrational states of the remaining H<sub>2</sub>O<sup>+</sup> cation (the so-called <i>v</i>-ratios), in contrast to the prominent oscillations observed in K-shell ionization of centrosymmetric molecules, including those that only contain hydrogen atoms around the central atoms, e.g., CH<sub>4</sub>. To validate the conclusions of our work, we have carried out synchrotron radiation experiments at the SOLEIL synchrotron and determined photoelectron spectra and <i>v</i>-ratios for H<sub>2</sub>O in a wide range of photon energies, from threshold up to 150 eV. The agreement with the theoretical predictions is good.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"6 5\",\"pages\":\"054101\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5106431\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5106431\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5106431","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Full-dimensional theoretical description of vibrationally resolved valence-shell photoionization of H2O.
We have performed a full-dimensional theoretical study of vibrationally resolved photoelectron emission from the valence shell of the water molecule by using an extension of the static-exchange density functional theory that accounts for ionization as well as for vibrational motion in the symmetric stretching, antisymmetric stretching, and bending modes. At variance with previous studies performed in centrosymmetric molecules, where vibrationally resolved spectra are mostly dominated by the symmetric stretching mode, in the present case, all three modes contribute to the calculated spectra, including intermode couplings. We have found that diffraction of the ejected electron by the various atomic centers is barely visible in the ratios between vibrationally resolved photoelectron spectra corresponding to different vibrational states of the remaining H2O+ cation (the so-called v-ratios), in contrast to the prominent oscillations observed in K-shell ionization of centrosymmetric molecules, including those that only contain hydrogen atoms around the central atoms, e.g., CH4. To validate the conclusions of our work, we have carried out synchrotron radiation experiments at the SOLEIL synchrotron and determined photoelectron spectra and v-ratios for H2O in a wide range of photon energies, from threshold up to 150 eV. The agreement with the theoretical predictions is good.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.