Amanda K Pettersen, Nathalie Feiner, Daniel W A Noble, Geoffrey M While, Tobias Uller, Charlie K Cornwallis
{"title":"母亲的行为体温调节促进了从产卵到活产的进化转变。","authors":"Amanda K Pettersen, Nathalie Feiner, Daniel W A Noble, Geoffrey M While, Tobias Uller, Charlie K Cornwallis","doi":"10.1093/evlett/qrad031","DOIUrl":null,"url":null,"abstract":"<p><p>Live birth is a key innovation that has evolved from egg-laying ancestors over 100 times in reptiles. However, egg-laying lizards and snakes can have preferred body temperatures that are lethal to developing embryos, which should select against prolonged egg retention. Here, we demonstrate that thermal mismatches between mothers and offspring are widespread across the squamate phylogeny. This mismatch is resolved by gravid females adjusting their body temperature towards the thermal optimum of their embryos. We find that the same response occurs in both live-bearing and egg-laying species, despite the latter only retaining embryos during the early stages of development. Importantly, phylogenetic reconstructions suggest this thermoregulatory behavior in gravid females evolved in egg-laying species prior to the evolution of live birth. Maternal thermoregulatory behavior, therefore, bypasses the constraints imposed by a slowly evolving thermal physiology and has likely been a key facilitator in the repeated transition to live birth.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565886/pdf/","citationCount":"1","resultStr":"{\"title\":\"Maternal behavioral thermoregulation facilitated evolutionary transitions from egg laying to live birth.\",\"authors\":\"Amanda K Pettersen, Nathalie Feiner, Daniel W A Noble, Geoffrey M While, Tobias Uller, Charlie K Cornwallis\",\"doi\":\"10.1093/evlett/qrad031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Live birth is a key innovation that has evolved from egg-laying ancestors over 100 times in reptiles. However, egg-laying lizards and snakes can have preferred body temperatures that are lethal to developing embryos, which should select against prolonged egg retention. Here, we demonstrate that thermal mismatches between mothers and offspring are widespread across the squamate phylogeny. This mismatch is resolved by gravid females adjusting their body temperature towards the thermal optimum of their embryos. We find that the same response occurs in both live-bearing and egg-laying species, despite the latter only retaining embryos during the early stages of development. Importantly, phylogenetic reconstructions suggest this thermoregulatory behavior in gravid females evolved in egg-laying species prior to the evolution of live birth. Maternal thermoregulatory behavior, therefore, bypasses the constraints imposed by a slowly evolving thermal physiology and has likely been a key facilitator in the repeated transition to live birth.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10565886/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrad031\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrad031","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Maternal behavioral thermoregulation facilitated evolutionary transitions from egg laying to live birth.
Live birth is a key innovation that has evolved from egg-laying ancestors over 100 times in reptiles. However, egg-laying lizards and snakes can have preferred body temperatures that are lethal to developing embryos, which should select against prolonged egg retention. Here, we demonstrate that thermal mismatches between mothers and offspring are widespread across the squamate phylogeny. This mismatch is resolved by gravid females adjusting their body temperature towards the thermal optimum of their embryos. We find that the same response occurs in both live-bearing and egg-laying species, despite the latter only retaining embryos during the early stages of development. Importantly, phylogenetic reconstructions suggest this thermoregulatory behavior in gravid females evolved in egg-laying species prior to the evolution of live birth. Maternal thermoregulatory behavior, therefore, bypasses the constraints imposed by a slowly evolving thermal physiology and has likely been a key facilitator in the repeated transition to live birth.