揭示传统数据与大数据的联动机制。

IF 2 4区 心理学 Q2 PSYCHOLOGY, MULTIDISCIPLINARY
Niek C de Schipper, Katrijn Van Deun
{"title":"揭示传统数据与大数据的联动机制。","authors":"Niek C de Schipper, Katrijn Van Deun","doi":"10.1027/2151-2604/a000341","DOIUrl":null,"url":null,"abstract":"<p><p><b></b> Recent technological advances have made it possible to study human behavior by linking novel types of data to more traditional types of psychological data, for example, linking psychological questionnaire data with genetic risk scores. Revealing the variables that are linked throughout these traditional and novel types of data gives crucial insight into the complex interplay between the multiple factors that determine human behavior, for example, the concerted action of genes and environment in the emergence of depression. Little or no theory is available on the link between such traditional and novel types of data, the latter usually consisting of a huge number of variables. The challenge is to select - in an automated way - those variables that are linked throughout the different blocks, and this eludes currently available methods for data analysis. To fill the methodological gap, we here present a novel data integration method.</p>","PeriodicalId":47289,"journal":{"name":"Zeitschrift Fur Psychologie-Journal of Psychology","volume":"226 4","pages":"212-231"},"PeriodicalIF":2.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736194/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing the Joint Mechanisms in Traditional Data Linked With Big Data.\",\"authors\":\"Niek C de Schipper, Katrijn Van Deun\",\"doi\":\"10.1027/2151-2604/a000341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b></b> Recent technological advances have made it possible to study human behavior by linking novel types of data to more traditional types of psychological data, for example, linking psychological questionnaire data with genetic risk scores. Revealing the variables that are linked throughout these traditional and novel types of data gives crucial insight into the complex interplay between the multiple factors that determine human behavior, for example, the concerted action of genes and environment in the emergence of depression. Little or no theory is available on the link between such traditional and novel types of data, the latter usually consisting of a huge number of variables. The challenge is to select - in an automated way - those variables that are linked throughout the different blocks, and this eludes currently available methods for data analysis. To fill the methodological gap, we here present a novel data integration method.</p>\",\"PeriodicalId\":47289,\"journal\":{\"name\":\"Zeitschrift Fur Psychologie-Journal of Psychology\",\"volume\":\"226 4\",\"pages\":\"212-231\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6736194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Psychologie-Journal of Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/2151-2604/a000341\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Psychologie-Journal of Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/2151-2604/a000341","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近的技术进步使得通过将新型数据与更传统类型的心理数据联系起来来研究人类行为成为可能,例如,将心理问卷数据与遗传风险评分联系起来。揭示这些传统和新型数据中的相关变量,可以深入了解决定人类行为的多种因素之间的复杂相互作用,例如基因和环境在抑郁症出现中的协同作用。关于这种传统类型和新型数据之间的联系,几乎没有理论,后者通常由大量变量组成。挑战在于以自动化的方式选择那些在不同区块中链接的变量,而这是目前可用的数据分析方法所无法实现的。为了填补方法上的空白,我们在这里提出了一种新的数据集成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing the Joint Mechanisms in Traditional Data Linked With Big Data.

Revealing the Joint Mechanisms in Traditional Data Linked With Big Data.

Revealing the Joint Mechanisms in Traditional Data Linked With Big Data.

Revealing the Joint Mechanisms in Traditional Data Linked With Big Data.

Recent technological advances have made it possible to study human behavior by linking novel types of data to more traditional types of psychological data, for example, linking psychological questionnaire data with genetic risk scores. Revealing the variables that are linked throughout these traditional and novel types of data gives crucial insight into the complex interplay between the multiple factors that determine human behavior, for example, the concerted action of genes and environment in the emergence of depression. Little or no theory is available on the link between such traditional and novel types of data, the latter usually consisting of a huge number of variables. The challenge is to select - in an automated way - those variables that are linked throughout the different blocks, and this eludes currently available methods for data analysis. To fill the methodological gap, we here present a novel data integration method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zeitschrift Fur Psychologie-Journal of Psychology
Zeitschrift Fur Psychologie-Journal of Psychology PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
4.10
自引率
5.60%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信