Pavel A Makhnovskii, Egor M Lednev, Alina O Gavrilova, Nadia S Kurochkina, Tatiana F Vepkhvadze, Marina V Shestakova, Daniil V Popov
{"title":"肥胖和2型糖尿病患者骨骼肌对混合膳食的早期基因反应失调。","authors":"Pavel A Makhnovskii, Egor M Lednev, Alina O Gavrilova, Nadia S Kurochkina, Tatiana F Vepkhvadze, Marina V Shestakova, Daniil V Popov","doi":"10.1152/physiolgenomics.00046.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.<b>NEW & NOTEWORTHY</b> In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of early gene response to a mixed meal in skeletal muscle in obesity and type 2 diabetes.\",\"authors\":\"Pavel A Makhnovskii, Egor M Lednev, Alina O Gavrilova, Nadia S Kurochkina, Tatiana F Vepkhvadze, Marina V Shestakova, Daniil V Popov\",\"doi\":\"10.1152/physiolgenomics.00046.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.<b>NEW & NOTEWORTHY</b> In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00046.2023\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00046.2023","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Dysregulation of early gene response to a mixed meal in skeletal muscle in obesity and type 2 diabetes.
Obesity- and type 2 diabetes mellitus-induced changes in the expression of protein-coding genes in human skeletal muscle were extensively examined at baseline (after an overnight fast). We aimed to compare the early transcriptomic response to a typical single meal in skeletal muscle of metabolically healthy subjects and obese individuals without and with type 2 diabetes. Transcriptomic response (RNA-seq) to a mixed meal (nutritional drink, ∼25 kJ/kg of body mass) was examined in the vastus lateralis muscle (1 h after a meal) in 7 healthy subjects and 14 obese individuals without or with type 2 diabetes. In all obese individuals, the transcriptome response to a meal was dysregulated (suppressed and altered) and associated with different biological processes compared with healthy control. To search for potential transcription factors regulating transcriptomic response to a meal, the enrichment of transcription factor-binding sites in individual promoters of the human skeletal muscle was examined. In obese individuals, the transcriptomic response is associated with a different set of transcription factors than that in healthy subjects. In conclusion, metabolic disorders are associated with a defect in the regulation of mixed meal/insulin-mediated gene expression-insulin resistance in terms of gene expression. Importantly, this dysregulation occurs in obese individuals without type 2 diabetes, i.e., at the first stage of the development of metabolic disorders.NEW & NOTEWORTHY In skeletal muscle of metabolically healthy subjects, a typical single meal normalized to body mass induces activation of various transcription factors, expression of numerous receptor tyrosine kinases associated with the insulin signaling cascade, and transcription regulators. In skeletal muscle of obese individuals without and with type 2 diabetes, this signaling network is poorly regulated at the transcriptional level, indicating dysregulation of the early gene response to a mixed meal.
期刊介绍:
The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.